$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review 원문보기

Carbon letters, v.16 no.2, 2015년, pp.67 - 77  

Jin, Fan-Long (Department of Polymer Materials, Jilin Institute of Chemical Technology) ,  Park, Soo-Jin (Department of Chemistry, Inha University)

Abstract AI-Helper 아이콘AI-Helper

Carbon fibers (CFs) have a unique combination of properties which allow them to be widely used as reinforcing materials in advanced polymer composites. The mechanical properties of CF-reinforced polymer composites are governed mainly by the quality of interfacial adhesion between the CFs and the pol...

Keyword

참고문헌 (88)

  1. Diaz A, Guizar-Sicairos M, Poeppel A, Menzel A, Bunk O. Characterization of carbon fibers using X-ray phase nanotomography. Carbon, 67, 98 (2014). http://dx.doi.org/10.1016/j.carbon.2013.09.066. 

  2. Seo MK, Min BG, Park SJ. Carbon fibers (II): recent technical trends and market prospects of carbon fibers. Carbon Lett, 9, 324 (2008). 

  3. Shin HK, Park M, Kang PH, Choi HS, Park SJ. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment. J Ind Eng Chem, 20, 3789 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.080. 

  4. Zhou G, Byun JH, Lee SB, Yi JW, Lee W, Lee SK, Kim BS, Park JK, Lee SG, He L. Nano structural analysis on stiffening phenomena of PAN-based carbon fibers during tensile deformation. Carbon, 76, 232 (2014). http://dx.doi.org/10.1016/j.carbon.2014.04.073. 

  5. Seo MK, Park SH, Kang SJ, Park SJ. Carbon fibers (III): recent technical and patent trends. Carbon Lett, 10, 43 (2009). 

  6. Speiser M, Henzler S, Hageroth U, Renfftlen A, Muller A, Schawaller D, Sandig B, Buchmeiser MR. Hollow carbon fibers with tailored porosity and rim-thickness. Carbon, 63, 554 (2013). http://dx.doi.org/10.1016/j.carbon.2013.07.036. 

  7. Alway-Cooper RM, Anderson DP, Ogale AA. Carbon black modification of mesophase pitch-based carbon fibers. Carbon, 59, 40 (2013). http://dx.doi.org/10.1016/j.carbon.2013.02.048. 

  8. Yang KS, Kim BH, Yoon SH. Pitch based carbon fibers for automotive body and electrodes. Carbon Lett, 15, 162 (2014). http://dx.doi.org/10.5714/CL.2014.15.3.162. 

  9. DeValve C, Pitchumani R. Experimental investigation of the damping enhancement in fiber-reinforced composites with carbon nanotubes. Carbon, 63, 71 (2013). http://dx.doi.org/10.1016/j.carbon.2013.06.041. 

  10. Jeong E, Kim J, Cho SH, Kim J, Han IS, Lee YS. New application of layered silicates for carbon fiber reinforced carbon composites. J Ind Eng Chem, 17, 191 (2011). http://dx.doi.org/10.1016/j.jiec.2011.02.032. 

  11. Choi KE, Seo MK. A study on the preparation of the eco-friendly carbon fibers-reinforced composites. Carbon Lett, 14, 58 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.058. 

  12. Kim BH, Yang KS. Structure and electrochemical properties of electrospun carbon fiber composites containing grapheme. J Ind Eng Chem, 20, 3474 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.037. 

  13. Hu X, Wang L, Xu F, Xiao T, Zhang Z. In situ observations of fractures in short carbon fiber/epoxy composites. Carbon, 67, 368 (2014). http://dx.doi.org/10.1016/j.carbon.2013.10.007. 

  14. Hong MS, Choi WK, An KH, Kang SJ, Park SJ, Lee YS, Kim BJ. Electromagnetic interference shielding behaviors of carbon fibersreinforced polypropylene matrix composites: II. Effects of filler length control. J Ind Eng Chem, 20, 3901 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.096. 

  15. Zhang H, Zhang Z, Breidt C. Comparison of short carbon fibre surface treatments on epoxy composites: I. Enhancement of the mechanical properties. Compos Sci Technol, 64, 2021 (2004). http://dx.doi.org/10.1016/j.compscitech.2004.02.009. 

  16. Donnet JB, Park SJ. Surface characteristics of pitch-based carbonfibers by inverse gas-chromatography method. Carbon, 29, 955 (1991). http://dx.doi.org/10.1016/0008-6223(91)90174-H. 

  17. Hong J, Park DW, Shim SE. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett, 11, 347 (2010). 

  18. Zhang ZZ, Song HJ, Men XH, Luo ZZ. Effect of carbon fibers surface treatment on tribological performance of polyurethane (PU) composite coating. Wear, 264, 599 (2008). http://dx.doi.org/10.1016/j.wear.2007.05.003. 

  19. Qin RY, Donnet JB. Influence of thermal and surface treatments on surface properties of pitch-based carbon fibers studied by inverse gas chromatography. Carbon, 32, 165 (1994). http://dx.doi.org/10.1016/0008-6223(94)90022-1. 

  20. Yang XP, Wang CZ, Yu YH, Ryu SK. Improvement of CF/ABS composite properties by anodic oxidation of pitch based C-type carbon fiber. Carbon Lett, 3, 80 (2002). 

  21. Park SJ, Seo MK. Carbon fiber-reinforced polymer composites: preparation, properties, and applications. In: Thomas S, Kuruvilla J, Malhotra SK, Goda K, Sreekala MS, eds. Polymer Composites: Volume 1, Wiley-VCH Verlag GmbH & Co. KGaA, 135 (2012). http://dx.doi.org/10.1002/9783527645213.ch5. 

  22. Park SJ, Jang YS, Kawasaki J. Studies on nanoscaled Ni-P plating of carbon fiber surfaces in a composite system. Carbon Lett, 3, 77 (2002). 

  23. Marieta C, Schulz E, Irusta L, Gabilondo N, Tercjak A, Mondragon I. Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behaviour of carbon fiber-reinforced cyanate matrix composites. Compos Sci Technol, 65, 2189 (2005). http://dx.doi.org/10.1016/j.compscitech.2005.05.008. 

  24. Park SJ, Kim MH. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites. J Mater Sci, 35, 1901 (2000). http://dx.doi.org/10.1023/A:1004754100310. 

  25. Park SJ, Cho KS, Ryu SK. Filler-elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber. Carbon, 41, 1437 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00088-5. 

  26. He H, Wang J, Li K, Wang J, Gu J. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength. Mater Des, 31, 4631 (2010). http://dx.doi.org/10.1016/j.matdes.2010.05.031. 

  27. Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4. 

  28. Park SJ, Seo MK, Lee YS. Surface characteristics of fluorinemodified PAN-based carbon fibers. Carbon, 41, 723 (2003). http://dx.doi.org/10.1016/S0008-6223(02)00384-6. 

  29. Park SJ, Park BJ. Electrochemically modified PAN carbon fibers and interfacial adhesion in epoxy-resin composites. J Mater Sci Lett, 18, 47 (1999). http://dx.doi.org/10.1023/A:1006673309571. 

  30. Park SJ, Kim BJ. Effect of Ni plating on mechanical interfacial properties of carbon fibers-reinforced composites. Carbon Lett, 3, 152 (2002). 

  31. Cao H, Huang Y, Zhang Z, Sun J. Uniform modification of carbon fibers surface in 3-D fabrics using intermittent electrochemical treatment. Compos Sci Technol, 65, 1655 (2005). http://dx.doi.org/10.1016/j.compscitech.2005.02.018. 

  32. Park SJ, Seo MK, Lee YS. Surface and mechanical interfacial properties of oxyfluorinated carbon fibers-reinforced composites. Carbon Lett, 4, 69 (2003). 

  33. Jin FL, Lee SY, Park SJ. Polymer matrices for carbon fiber-reinforced polymer composites. Carbon Lett, 14, 76 (2013). http://dx.doi.org/10.5714/CL.2013.14.2.076. 

  34. Park SJ, Jin FL, Lee JR. Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun, 25, 724 (2004). http://dx.doi.org/10.1002/marc.200300191. 

  35. Vieille B, Casado VM, Bouvet C. About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: a comparative study. Compos Struct, 101, 9 (2013). http://dx.doi.org/10.1016/j.compstruct.2013.01.025. 

  36. Park SJ, Jin FL, Lee JR. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater Sci Eng A, 374, 109 (2004). http://dx.doi.org/10.1016/j.msea.2004.01.002. 

  37. Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.001. 

  38. Park SJ, Jin FL, Lee JR. Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys, 205, 2048 ( 2004). http://dx.doi.org/10.1002/macp.200400214. 

  39. Park SJ, Oh JS, Rhee KY. Effect of atmospheric plasma treatment of carbon fibers on crack resistance of carbon fibers-reinforced epoxy composites. Carbon Lett, 6, 106 (2005). 

  40. Park SJ, Jin FL. Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride. Polym Degrad Stab, 86, 515 (2004). http://dx.doi.org/10.1016/j.polymdegradstab.2004.06.003. 

  41. Huang Z, Sugiyama S, Yanagimoto J. Hybrid joining process for carbon fiber reinforced thermosetting plastic and metallic thin sheets by chemical bonding and plastic deformation. J Mater Process Technol, 213, 1864 (2013). http://dx.doi.org/10.1016/j.jmatprotec.2013.04.015. 

  42. Park SJ, Jin FL, Lee C. Preparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins. Mater Sci Eng A, 402, 335 (2005). http://dx.doi.org/10.1016/j.msea.2005.05.015. 

  43. Park SJ, Jin FL, Nicolais L. Epoxy resins: fluorine systems. In Wiley Encyclopedia of Composites, John Wiley & Sons, 842 (2011). http://dx.doi.org/10.1002/9781118097298.weoc076. 

  44. Zhang G, Sun S, Yang D, Dodelet JP, Sacher E. The surface analytical characterization of carbon fibers functionalized by $H_2SO_4/HNO_3$ treatment. Carbon, 46, 196 (2008). http://dx.doi.org/10.1016/j.carbon.2007.11.002. 

  45. Li J, Cai CL. The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites. Curr Appl Phys, 11, 50 (2011). http://dx.doi.org/10.1016/j.cap.2010.06.017. 

  46. Seo MK, Park SJ. Surface characteristics of carbon fibers modified by direct oxyfluorination. J Colloid Interface Sci, 330, 237 (2009). http://dx.doi.org/10.1016/j.jcis.2008.10.005. 

  47. Park SJ, Seo MK, Lee JR. Relationship between surface characteristics and interlaminar shear strength of oxyfluorinated carbon fibers in a composite system. J Colloid Interface Sci, 268, 127 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00718-5. 

  48. Lee JS, Kang TJ. Changes in physico-chemical and morphological properties of carbon fiber by surface treatment. Carbon, 35, 209 (1997). http://dx.doi.org/10.1016/S0008-6223(96)00138-8. 

  49. Ryu SK, Park BJ, Park SJ. XPS analysis of carbon fiber surfaces-anodized and interfacial effects in fiber-epoxy composites. J Colloid Interface Sci, 215, 167 (1999). http://dx.doi.org/10.1006/jcis.1999.6240. 

  50. Osbeck S, Ward S, Idriss H. Effect of UV and electrochemical surface treatments on the adsorption and reaction of linear alcohols on non-porous carbon fibre. Appl Surf Sci, 270, 272 (2013). http://dx.doi.org/10.1016/j.apsusc.2012.12.173. 

  51. Park SJ, Kim MH, Lee JR, Choi S. Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites. J Colloid Interface Sci, 228, 287 (2000). http://dx.doi.org/10.1006/jcis.2000.6953. 

  52. Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng A, 408, 269 (2005). http://dx.doi.org/10.1016/j.msea.2005.08.129. 

  53. Park SJ, Donnet JB. Anodic surface treatment on carbon fibers: determination of acid-base interaction parameter between two unidentical solid surfaces in a composite system. J Colloid Interface Sci, 206, 29 (1998). http://dx.doi.org/10.1006/jcis.1998.5672. 

  54. Yuan LY, Chen CS, Shyu SS, Lai JY. Plasma surface treatment on carbon fibers. Part 1: Morphology and surface analysis of plasma etched fibers. Compos Sci Technol, 45, 1 (1992). http://dx.doi.org/10.1016/0266-3538(92)90116-K. 

  55. Li H, Liang H, He F, Huang Y, Wan Y. Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites. Surf Coat Technol, 203, 1317 (2009). http://dx.doi.org/10.1016/j.surfcoat.2008.10.042. 

  56. Iwashita N, Psomiadou E, Sawada Y. Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiber reinforced carbon composites. Composites A, 29, 965 (1998). http://dx.doi.org/10.1016/S1359-835X(97)00095-X. 

  57. Zhang X, Huang Y, Wang T, Liu L. Influence of fibre surface oxidation-reduction followed by silsesquioxane coating treatment on interfacial mechanical properties of carbon fibre/polyarylacetylene composites. Composites A, 38, 936 (2007). http://dx.doi.org/10.1016/j.compositesa.2006.07.003. 

  58. Park SJ, Jang YS. X-ray diffraction and X-ray photoelectron spectroscopy studies of Ni-P deposited onto carbon fiber surfaces: impact properties of a carbon-fiber-reinforced matrix. J Colloid Interface Sci, 263, 170 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00290-X. 

  59. Park SJ, Jang YS. Interfacial characteristics and fracture toughness of electrolytically Ni-plated carbon fiber-reinforced phenolic resin matrix composites. J Colloid Interface Sci, 237, 91 (2001). http://dx.doi.org/10.1006/jcis.2001.7441. 

  60. Barton JM, Hamerton I, Jones JR, Stedman JC. Mechanical properties of tough, high temperature carbon fibre composites from novel functionalized aryl cyanate ester polymers. Polymer, 37, 4519 (1996). http://dx.doi.org/10.1016/0032-3861(96)00053-5. 

  61. Ren P, Liang G, Zhang Z. Epoxy-modified cyanate ester resin and its high- modulus carbon-fiber composites. Polym Compos, 27, 402 (2006). http://dx.doi.org/10.1002/pc.20207. 

  62. Ren P, Liang G, Zhang Z. Influence of epoxy sizing of carbon-fiber on the properties of carbon fiber/cyanate ester composites. Polym Compos, 27, 591 (2006). http://dx.doi.org/10.1002/pc.20230. 

  63. Dong W, Liu HC, Park SJ, Jin FL. Fracture toughness improvement of epoxy resins with short carbon fibers. J Ind Eng Chem, 20, 1220 (2014). http://dx.doi.org/10.1016/j.jiec.2013.06.053. 

  64. Park SJ, Jang YS, Rhee KY. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces. J Colloid Interface Sci, 245, 383 (2002). http://dx.doi.org/10.1006/jcis.2001.8040. 

  65. Park SJ, Seo MK, Rhee KY. Studies on mechanical interfacial properties of oxy-fluorinated carbon fibers-reinforced composites. Mater Sci Eng A, 356, 219 (2003). http://dx.doi.org/10.1016/S0921-5093(03)00134-5. 

  66. Moaseri E, Maghrebi M, Baniadam M. Improvements in mechanical properties of carbon fiber-reinforced epoxy composites: a microwave- assisted approach in functionalization of carbon fiber via diamines. Mater Des, 55, 644 (2014). http://dx.doi.org/10.1016/j.matdes.2013.10.040. 

  67. Siegfried M, Tola C, Claes M, Lomov SV, Verpoest I, Gorbatikh L. Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes. Compos Struct, 111, 488 (2014). http://dx.doi.org/10.1016/j.compstruct.2014.01.035. 

  68. Choi MH, Jeon BH, Chung IJ. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer, 41, 3243 (2000). http://dx.doi.org/10.1016/S0032-3861(99)00532-7. 

  69. Vilcakova J, Saha P, Kresalek V, Quadrat O. Pre-exponential factor and activation energy of electrical conductivity in polyester resin/carbon fibre composites. Synth Met, 113, 83 (2000). http://dx.doi.org/10.1016/S0379-6779(99)00454-3. 

  70. Vilciakova J, Saha P, Quadrat O. Electrical conductivity of carbon fibres/polyester resin composites in the percolation threshold region. Eur Polym J, 38, 2343 (2002). http://dx.doi.org/10.1016/S0014-3057(02)00145-3. 

  71. Yudin VE, Goykhman MY, Balik K, Glogar P, Gubanova GN, Kudriavtsev VV. Carbonization behaviour of some polyimide resins reinforced with carbon fibers. Carbon, 38, 5 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00073-1. 

  72. Mascia L, Zhang Z, Shaw SJ. Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship. Composites A, 27, 1211 (1996). http://dx.doi.org/10.1016/1359-835X(96)00082-6. 

  73. Liu A, Guo M, Gao J, Zhao M. Influence of bond coat on shear adhesion strength of erosion and thermal resistant coating for carbon fiber reinforced thermosetting polyimide. Compos Sci Technol, 201, 2696 (2006). http://dx.doi.org/10.1016/j.surfcoat.2006.05.012. 

  74. Xu J, Donohoe JP, Pittman CU Jr. Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites. Composites A, 35, 693 (2004). http://dx.doi.org/10.1016/j.compositesa.2004.02.016. 

  75. Kumar S, Satapathy BK, Patnaik A. Thermo-mechanical correlations to erosion performance of short carbon fibre reinforced vinyl ester resin composites. Mater Des, 32, 2260 (2011). http://dx.doi.org/10.1016/j.matdes.2010.11.019. 

  76. Kumar S, Satapathy BK, Patnaik A. Thermo-mechanical correlations to erosion performance of short glass/carbon fiber reinforced vinyl ester resin hybrid composites. Comput Mater Sci, 60, 250 (2012). http://dx.doi.org/10.1016/j.commatsci.2012.03.021. 

  77. Chung K, Seferis JC. Evaluation of thermal degradation on carbon fiber/cyanate ester composites. Polym Degrad Stab, 71, 425 (2001). http://dx.doi.org/10.1016/S0141-3910(00)00194-4. 

  78. Li J, Fan Q, Chen Z, Huang K, Cheng Y. Effect of electropolymer sizing of carbon fiber on mechanical properties of phenolic resin composites. Trans Nonferrous Met Soc China, 16, S457 (2006). http://dx.doi.org/10.1016/S1003-6326(06)60233-1. 

  79. Markovic V, Marinkovic S. A study of pyrolysis of phenolic resin reinforced with carbon fibers and oxidized PAN fibres. Carbon, 18, 329 (1980). http://dx.doi.org/10.1016/0008-6223(80)90004-4. 

  80. Singh AP, Garg P, Alam F, Singh K, Mathur RB, Tandon RP, Chandra A, Dhawan SK. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, $\gamma$ - $Fe_2O_3$ and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon, 50, 3868 (2012). http://dx.doi.org/10.1016/j.car-bon.2012.04.030. 

  81. Wyatt RC, Ashbee KHG. Debonding in carbon fiber/polyester resin composites exposed to water: comparison with 'E' glass fiber composites. Fibre Sci Tech, 2, 29 (1969). http://dx.doi.org/10.1016/0015-0568(69)90029-3. 

  82. Sadeghian R, Gangireddy S, Minaie B, Hsiao KT. Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites A, 37, 1787 (2006). http://dx.doi.org/10.1016/j.compositesa.2005.09.010. 

  83. Hsiao KT, Gangireddy S. Investigation on the spring-in phenomenon of carbon nanofiber-glass fiber/polyester composites manufactured with vacuum assisted resin transfer molding. Composites A, 39, 834 (2008). http://dx.doi.org/10.1016/j.compositesa.2008.01.015. 

  84. Srivastava VK, Rastogi A, Goel SC, Chukowry SK. Implantation of tricalcium phosphate-polyvinyl alcohol filled carbon fibre reinforced polyester resin composites into bone marrow of rabbits. Mater Sci Eng A, 448, 335 (2007). http://dx.doi.org/10.1016/j.msea.2006.11.004. 

  85. Xie J, Xin D, Cao H, Wang C, Zhao Y, Yao L, Ji F, Qiu Y. Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment. Surf Coat Technol, 206, 191 (2011). http://dx.doi.org/10.1016/j.surfcoat.2011.04.016. 

  86. Naganuma T, Naito K, Yang JM, Kyono J, Sasakura D, Kagawa Y. The effect of a compliant polyimide nanocoating on the tensile properties of a high strength PAN-based carbon fiber. Compos Sci Technol, 69, 1319 (2009). http://dx.doi.org/10.1016/j.compscitech.2009.03.002. 

  87. Verghese KNE, Jensen RE, Lesko JJ, Ward TC. Effects of molecular relaxation behavior on sized carbon fiber-vinyl ester matrix composite properties. Polymer, 42, 1633 (2001). http://dx.doi.org/10.1016/S0032-3861(00)00351-7. 

  88. Wonderly C, Grenestedt J, Fernlund G, Cepus E. Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites. Composites B, 36, 417 (2005). http://dx.doi.org/10.1016/j.compositesb.2005.01.004. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로