$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Effects of maleic anhydride content on mechanical properties of carbon fibers-reinforced maleic anhydride-grafted-poly-propylene matrix composites 원문보기

Carbon letters, v.20, 2016년, pp.39 - 46  

Kim, Hyun-Il (R&D Division, Korea Institute of Carbon Convergence Technology) ,  Han, Woong (R&D Division, Korea Institute of Carbon Convergence Technology) ,  Choi, Woong-Ki (R&D Division, Korea Institute of Carbon Convergence Technology) ,  Park, Soo-Jin (Department of Chemistry, Inha University) ,  An, Kay-Hyeok (Department of Nano & Advanced Materials Engineering, Jeonju University) ,  Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)

Abstract AI-Helper 아이콘AI-Helper

In this work, the effects of maleic anhydride (MA) content on mechanical properties of chopped carbon fibers (CFs)-reinforced MA-grafted-polypropylene (MAPP) matrix composites. A direct oxyfluorination on CF surfaces was applied to increase the interfacial strength between the CFs and MAPP matrix. T...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • The objective of this work is to investigate and compare the effects of MA content on mechanical properties of oxyfluorinated carbon fibers-reinforced MAPP matrix composites. The mechanical and morphological properties of carbon fibers/MAPP composites are likely to be different from those of MAPP in terms of MA content.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Li J. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber. Appl Surf Sci, 255 , 8682 (2009). http://dx.doi.org/10.1016/j.apsusc.2009.06.053. 

  2. Park JM, Lee JO, Park TW. Improved interfacial shear strength and durability of single carbon fiber reinforced isotactic polypropylene composites using water-dispersible graft copolymer as a coupling agent. Polym Compos, 17 , 375 (1996). http://dx.doi.org/10.1002/pc.10624. 

  3. Van Hattum FWJ, Bernardo CA, Finegan JC, Tibbetts GG, Alig RL, Lake ML. A study of the thermomechanical properties of carbon fiber-polypropylene composites. Polym Compos, 20 , 683 (1999). http://dx.doi.org/10.1002/pc.10391. 

  4. Choi MH, Jeon BH, Chung IJ. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer, 41 , 3243 (2000). http://dx.doi.org/10.1016/s0032-3861(99)00532-7. 

  5. Leong YW, Abu Bakar MB, Ishak ZAM, Ariffin A, Pukanszky B. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci, 91 , 3315 (2004). http://dx.doi.org/10.1002/app.13542. 

  6. Wypych G. Handbook of Fillers, 2nd ed., ChemTec, New York, 2000. 

  7. Karger-Kocsis J. Microstructural Aspects of Fracture in Polypropylene and in Its Filled Chopped Fibre and Fibre Mat Reinforced Composites. In: Karger-Kocsis J, ed. Polypropylene Structure, Blends and Composites: Composites Volume 3, Chapman and Hall, London, 142 (1995). 

  8. Girault HHJ, Schiffrin DJ, Smith BDV. The measurement of interfacial tension of pendant drops using a video image profile digitizer. J Colloid Interface Sci, 101 , 257 (1984). http://dx.doi.org/10.1016/0021-9797(84)90026-2. 

  9. Ageorges C, Friedrich K, Ye L. Experiments to relate carbon-fibre surface treatments to composite mechanical properties. Compos Sci Technol, 59 , 2101 (1999). http://dx.doi.org/10.1016/s0266-3538(99)00067-6. 

  10. Bigg DM, Preston JR. Stamping of thermoplastic matrix composites. Polym Compos, 10 , 261 (1989). http://dx.doi.org/10.1002/pc.750100409. 

  11. Atkinson KE, Kiely C. The influence of fibre surface properties on the mode of failure in carbon-fibre/epoxy composites. Compos Sci Technol, 58 , 1917 (1998). http://dx.doi.org/10.1016/s0266-3538(98)00012-8. 

  12. Mallick PK. Fibre-Reinforced Composites: Materials, Manufacturing, and Design, 2nd ed., Marcel Dekker, New York, 1993. 

  13. Xu Z, Chen L, Huang Y, Li J, Wu X, Li X, Jiao Y. Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy. Eur Polym J, 44 , 494 (2008). http://dx.doi.org/10.1016/j.eurpolymj.2007.11.021. 

  14. Huang YD, Cao HL, Zhang ZQ. Effects of anodic oxidation treatment for three dimensional carbon fibre braided fabric on properties of its composite. Mater Sci Technol, 17 , 1459 (2001). http://dx.doi.org/10.1179/026708301101509476. 

  15. Fukunaga A, Ueda S, Nagumo M. Air-oxidation and anodization of pitch-based carbon fibers. Carbon, 37 , 1081 (1999). http://dx.doi.org/10.1016/s0008-6223(98)00307-8. 

  16. Alexander MR, Jones FR. Effect of electrolytic oxidation upon the surface chemistry of type A carbon fibres: Part II, analysis of derivatised surface functionalities by XPS, and TOF SIMS. Carbon, 33 , 569 (1995). http://dx.doi.org/10.1016/0008-6223(94)00142-m. 

  17. Gulyás J, Földes E, Lázár A, Pukánszky B. Electrochemical oxidation of carbon fibres: surface chemistry and adhesion. Compos Part A Appl Sci Manuf, 32 , 353 (2001). http://dx.doi.org/10.1016/s1359-835x(00)00123-8. 

  18. Delamar M, Désarmot G, Fagebaume O, Hitmi R, Pinsonc J, Savé-ant JM. Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: application to carbon epoxy composites. Carbon, 35 , 801 (1997). http://dx.doi.org/10.1016/s0008-6223(97)00010-9. 

  19. Nakajima T. Fluorine–Carbon and Fluoride–Carbon Materials: Chemistry, Physics, and Application, Dekker, New York, 1995. 

  20. Karitonov AP. Practical applications of the direct fluorination of polymers. J Fluor Chem, 103 , 123 (2000). http://dx.doi.org/10.1016/s0022-1139(99)00312-7. 

  21. du Toit FJ, Sanderson RD. Surface fluorination of polypropylene: 2. adhesion properties. J Fluor Chem, 98 , 115 (1999). http://dx.doi.org/10.1016/S0022-1139(99)00092-5. 

  22. Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct, 77 , 45 (2007). http://dx.doi.org/10.1016/j.compstruct.2005.06.005. 

  23. Wu CS. Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid: characterization and biodegradability assessment. Macromol Biosci, 5 , 352 (2005). http://dx.doi.org/10.1002/mabi.200400159. 

  24. Acha BA, Aranguren MI, Marcovich NE, Reboredo MM. Composites from PMMA modified thermosets and chemically treated woodflour. Polym Eng Sci, 43 , 999 (2003). http://dx.doi.org/10.1002/pen.10084. 

  25. Stark NM. Wood fiber derived from scrap pallets used in polypropylene composites. For Prod J, 49 , 39 (1999). 

  26. Karmaker AC, Youngquist JA. Injection molding of polypropylene reinforced with short jute fibers. J Appl Polym Sci, 62 , 1147 (1996). http://dx.doi.org/10.1002/(sici)1097-4628(19961121)62:8 3.0.co;2-i. 

  27. Princen HM. Capillary phenomena in assemblies of parallel cylinders: I. capillary rise between two cylinders. J Colloid Interface Sci, 30 , 69 (1969). http://dx.doi.org/10.1016/0021-9797(69)90379-8. 

  28. Blake TD. The physics of moving wetting lines. J Colloid Interface Sci, 299 , 1 (2006). http://dx.doi.org/10.1016/j.jcis.2006.03.051. 

  29. van Oss CJ, Wu W, Docoslis A, Giese RF. The interfacial tensions with water and the Lewis acid–base surface tension parameters of polar organic liquids derived from their aqueous solubilities. Colloids Surf B Biointerfaces, 20 , 87 (2001). http://dx.doi.org/10.1016/s0927-7765(00)00169-7. 

  30. Woo SW, Song MY, Rho JS, Lee YS. The effect of oxyfluorination on the surface characteristics of low-density polyethylene films. J Ind Eng Chem, 11 , 55 (2005). 

  31. Seo MK, Park SJ. Surface characteristics of carbon fibers modified by direct oxyfluorination. J Colloid Interface Sci, 330 , 237 (2009). http://dx.doi.org/10.1016/j.jcis.2008.10.005. 

  32. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci, 13 , 1741 (1969). http://dx.doi.org/10.1002/app.1969.070130815. 

  33. Wang H, Huang JZ, Yin XG, Wei F. Investigation of carbon fiber wetting process by Wilhelmy method and force analysis method. Key Eng Mater, 591 , 338 (2013). http://dx.doi.org/10.4028/www.scientific.net/kem.591.338. 

  34. Li J, Zhu B, He Y, Inoue Y. Thermal and infrared spectroscopic studies on hydrogen-bonding interaction between poly(3-hydroxybutyrate) and catechin. Polym J, 35 , 384 (2003). http://dx.doi.org/10.1295/polymj.35.384. 

  35. Chen YM, Wang MK, Huang PM. Catechin transformation as influenced by aluminum. J Agric Food Chem, 54 , 212 (2006). http://dx.doi.org/10.1021/jf051926z. 

  36. Xanthos M. Interfacial agents for multiphase polymer systems: recent advances. Polym Eng Sci, 28 , 1392 (1988). http://dx.doi.org/10.1002/pen.760282108. 

  37. Zhai Z, Liu Z, Feng L, Liu S. Interfacial adhesion of glass fibre reinforced polypropylene–maleic anhydride modified polypropylene copolymer composites. J Reinf Plast Compos, 33 , 785 (2014). http://dx.doi.org/10.1177/0731684413519006. 

  38. Zhou X, Chen L, Lin Q. Effects of chemical foaming agents on the physic-mechanical properties and rheological behavior of bamboo powder-polypropylene foamed composites. BioResources, 7 , 2183 (2012). http://dx.doi.org/10.15376/biores.7.2.2183-2198. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로