$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

광양항의 수출물동량과 수출액의 변동성

Volatility of Export Volume and Export Value of Gwangyang Port

초록

변동성이나 변이계수의 크기와 미치는 효과의 크기가 반드시 비례하는 것은 아니다. 그것은 변동성을 유발하는 요인이나 변동성의 특성에 차이가 있을 수 있기 때문이다. 그런데 광양항의 수출액과 수출량은 밀접한 선형관계를 가지나 두 변수의 변동률은 낮은 상관관계를 보인다. 이것은 두 변수의 변동성의 특성이 다르다는 것을 의미한다. 이에 물동량과 수출액의 예측하지 못한 요인의 밀도함수가 정규분포 형태를 보이지 않을 뿐만 아니라 부호편의검정, 규모편의검정, 결합검정, Ljung-Box Q 통계량 등이 GARCH와 같은 변동성 모형을 이용하여 분석을 실시하는 것이 합리적임을 보인다. 물동량 변동성에서는 대칭적 GARCH모형이 아닌 비대칭 GARCH모형이 적합한데 비해 수출액 변동성에서는 GARCH모형이 적합함을 보인다. 뉴스충격곡선을 도출하여 물동량의 경우 GJR모형이 EGARCH모형에 비해 나쁜 뉴스에 대한 분산을 과대평가하나 좋은 뉴스에 대한 분산을 과소평가하는 경향이 있음을 밝힌다.

Abstract

The standard GARCH model imposing symmetry on the conditional variance, tends to fail in capturing some important features of the data. This paper, hence, introduces the models capturing asymmetric effect. They are the EGARCH model and the GJR model. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. This paper shows that there is significant evidence of GARCH-type process in the data, as shown by the test for the Ljung-Box Q statistic on the squared residual data. The estimated unconditional density function for squared residual is clearly skewed to the left and markedly leptokurtic when compared with the standard normal distribution. The observation of volatility clustering is also clearly reinforced by the plot of the squared value of residuals of export volume and values. The unconditional variance of both export volumes and export value indicates that large shocks of either sign tend to be followed by large shocks, and small shocks of either sign tend to follow small shocks. The estimated export volume news impact curve for the GARCH also suggests that $h_t$ is overestimated for large negative and positive shocks. The conditional variance equation of the GARCH model for export volumes contains two parameters ${\alpha}$ and ${\beta}$ that are insignificant, indicating that the GARCH model is a poor characterization of the conditional variance of export volumes. The conditional variance equation of the EGARCH model for export value, however, shows a positive sign of parameter ${\delta}$, which is contrary to our expectation, while the GJR model exhibits that parameters ${\alpha}$ and ${\beta}$ are insignificant, and ${\delta}$ is marginally significant. That indicates that the asymmetric volatility models are poor characterization of the conditional variance of export value. It is concluded that the asymmetric EGARCH and GJR model are appropriate in explaining the volatility of export volume, while the symmetric standard GARCH model is good for capturing the volatility.

주제어

#GARCH   #EGARCH   #GJR  

질의응답 

키워드에 따른 질의응답 제공
핵심어 질문 논문에서 추출한 답변
광양항의 수출액과 수출량
광양항의 수출액과 수출량은 어떤 관계를 가지는가?
밀접한 선형관계

그것은 변동성을 유발하는 요인이나 변동성의 특성에 차이가 있을 수 있기 때문이다. 그런데 광양항의 수출액과 수출량은 밀접한 선형관계를 가지나 두 변수의 변동률은 낮은 상관관계를 보인다. 이것은 두 변수의 변동성의 특성이 다르다는 것을 의미한다.

광양항
광양항의 수출액과 수출물동량은 어떤 추세인가?
꾸준히 증가하고 있다

광양항의 수출액과 수출물동량은 꾸준히 증가하고 있다. 수출액은 2000년 49억 달러에서 2013년 270억 달러로 증가하였고 물동량도 772만 톤에서 1923만 톤으로 늘었다.

변이계수
변이계수의 크기와 미치는 효과의 크기가 반드시 비례하는 것은 아닌 이유는?
변동성을 유발하는 요인이나 변동성의 특성에 차이가 있을 수 있기 때문

변동성이나 변이계수의 크기와 미치는 효과의 크기가 반드시 비례하는 것은 아니다. 그것은 변동성을 유발하는 요인이나 변동성의 특성에 차이가 있을 수 있기 때문이다. 그런데 광양항의 수출액과 수출량은 밀접한 선형관계를 가지나 두 변수의 변동률은 낮은 상관관계를 보인다.

질의응답 정보가 도움이 되었나요?

저자의 다른 논문

참고문헌 (38)

  1. 김창범(2010), 환위험과 경기불확실성이 우리나라의 수입물동량에 미치는 영향, 한국항만경제학회지, 제26집 제4호, 88-103. 
  2. 모수원.이광배(2014), BDI의 변동성 추정: 레버리지 GARCH 모형을 중심으로, 한국항만경제학회지, 제30집 제3호, 1-14. 
  3. 최병옥.김원태(2007), 참외 주산지와 도매시장 가격의 동태적 인과성 분석, 농촌경제, 제30권 제3호, 69-85. 
  4. 최봉호(2007), 환율변동성과 컨테이너 물동량과의 관계, 한국항만경제학회지, 제23집 제1호, 1-18. 
  5. Andrew, M. and Meen, G.(2003), House Price Appre ciation, Transaction and Structural Change in the British Housing Market: A Macroeconomic Perspective, Real Estate Economics, 31(1), 99-116. 
  6. Berg, L. and J. Lyhagen(1998), Short and Long-Run Dependency in Swedish Stock Returns, Applied Financial Economics, 18, 435-443. 
  7. Black, F.(1976), Studies in Stock Price Volatility Changes, Proceedings of the 1976 Business Meeting of the Business and Economics Statistics Section, American Statistical Association, 177-181. 
  8. Bollerslev, T.(1986), Generalized Autoregressive Conditional Heteroscedasticity, Journal of Econometrics, 31, 307-327. 
  9. Bollerslev, T., R. Chou, and K. Kroner(1986), ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence, Journal of Econometrics, 52, 5-59. 
  10. Campbell, J. and L. Hentschel(1992), No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns, Journal of Financial Economics, 31, 381-318. 
  11. Chou, R.(1988), Volatility Persistence and Stock Valuations: Some Empirical Evidence Using GARCH, Journal of Applied Econometrics, 3, 279-294. 
  12. Christie, A.(1982), The Stochastic Behavior of Common Stock Variance: Value, Leverage and Interest Rate Effects, Journal of Financial Economics, 10, 407-432. 
  13. Ederington, L.H. and W. Guan(2005), Forecasting Volatility, Journal of Futures Markets, 25(5), 465-490. 
  14. Engle, R.F.(1993), Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation, Econometrica, 50, 987-1008. 
  15. Engle, R.F., Lilien, D.M., and Robinson, R.P.(1987), Estimating Time Varying Risk Premia in the Term Structure: the ARCH-M Model, Econometrica, 55, 391-407. 
  16. Engle, R.(1984), Wald Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics, in: Z. Grrliches and M.D. Intrigator, eds.: Handbook of Econometrics, 2, North Holland, Amsterdam. 
  17. Engle, R., and D. Kraft(1983), Multiperiod Forecast Error Variances of Inflation Estimated from ARCH Models, in A. Zellner, ed.: Applied Time Series Analysis of Economic Data, Bureau of the Census, Washington, D.C., 293-302. 
  18. Engle, R.F. and V.K. Ng(1993), Measuring and Testing the Impact of News on Volatility, Journal of Finance, 48, 1749-1778. 
  19. French, K., G.W. Schwert, and R. Stambaugh (1987), Expected Stock Returns and Volatility, Journal of Financial Economics, 19, 3-29. 
  20. Glosten, L., R. Jaganathan, and D. Runkle(1993), On the Relation Between the Expected Value and Volatility of The Nominal Excess Return on Stocks, Journal of Finance, 48, 1779-1801. 
  21. Rivera, G., T-H. Lee, and S. Mishra(2004), Forecasting Volatility: A Reality Check Based on Option Pricing, Utility Function, Value-at-Risk, and Predictive Likelihood, International Journal of Forecasting, 20, 629-645. 
  22. Henry, O.(1998), Modelling the Asymmetry of Stock Market Volatility, Applied Financial Economics, 8, 145-153. 
  23. Hillebrand, E.(2005), Neglecting Parameter Changes in GARCH Models, Journal of Econometrics, 129, 121-138. 
  24. Lin, A.Y.(2006), Has the Asian Crisis Changed the Role of Foreign Investor in Emerging Equity Markets: Taiwan's Experience, International Review of Economics and Finance, 15, 364-382. 
  25. Lopez, J.(2001), Evaluating the Predictive Accuracy of Volatility Models, Journal of Forecasting, 20, 87-109. 
  26. Merton, R.C.(1980), On Estimating the Expected Return on the Market: An Exploratory Investigation, Journal of Financial Economics, 8, 323-361. 
  27. Mikosch, T. and C. Starica(2004), Non-stati onarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects, Review of Economics and Statistics, 86, 378-390. 
  28. Miller, N. and Peng, L.(2004), Exploring Metropolitan Housing Price Volatility, Journal of Real Estate Finance and Economics, 33(1), 5-18. 
  29. Milunovich, G. and S. Thorp(2006), Valuing Volatility Spillovers, Global Finance Journal, 17, 1-22. 
  30. Miyakoshi, T.(2003), Spillovers of Stock Return Volatility to Asian Equity Markets from Japan the US, Journal of International Financial Markets, Institutions and Money, 13, 383-399. 
  31. Mougoue, M. and Aggarwal, R.(2011), Trading Volume and Exchange Rate Volatility: Evidence for the Sequential Arrival of Information Hypothesis, Journal of Banking & Finance, 35(10), 2690-2703. 
  32. Naoui, K., Liouane, N. and Brahim, S.(2010), A Dynamic Conditional Correlation Analysis of Financial Contagion: The Case of the Subprime Credit Crisis, International Journal of Economics and Finance, 2(3), 85-96. 
  33. Nelson, D.(1990), Stationarity and Persistence in the GARCH (1,1) Model, Econometric Theory, 6, 318-334. 
  34. Nelson, D.(1991), Conditional Heteroskedasticity in Asset Returns: A New Approach, Econometrica, 59, 347-370. 
  35. Pagan, A. and G. Schwert(1990), Alternative Models for Common Stock Volatility, Journal of Econometrics, 45, 267-290. 
  36. Poon, S.H. and C. Granger(2003), Forecasting Volatility in Financial Markets: A Review, Journal of Economic Literature, 41, 478-539. 
  37. Rapach, D.E. and J.K. Struass(2008), Structural Breaks and GARCH Models of Exchange Rate Volatility, Journal of Applied Econometrics, 23, 65-90. 
  38. Schwert, G.W.(1990), Stock Volatility and the Crash of 87, Review of Financial Studies, 3, 77-102. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일

"" 핵심어 질의응답