최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of electrical engineering & technology, v.10 no.3, 2015년, pp.1342 - 1348
Fonseca Junior, Joao Gari da Silva (Institute of Industrial Science, University of Tokyo) , Oozeki, Takashi (System and Applications Team, Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology) , Ohtake, Hideaki (System and Applications Team, Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology) , Takashima, Takumi (System and Applications Team, Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology) , Kazuhiko, Ogimoto (Institute of Industrial Science, University of Tokyo)
The objective of this study is to propose a method to calculate prediction intervals for one-day-ahead hourly forecasts of photovoltaic power generation and to evaluate its performance. One year of data of two systems, representing contrasting examples of forecast’ accuracy, were used. The me...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
A. Mellit and A. M. Pavan, “A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy,” Solar Energy, vol. 84, no. 5, pp. 807-821, 2010.
E. Lorenz, D. Heinemann, H. Wickramarathne, H. G. Beyer, and S. Bofinger, "Forecast of Ensemble Power Production by Grid-Connected PV Systems," in Proceedings of the 20th European PV Conference, Italy, pp. 3.9-7.9, 2007.
A. Yona, T. Senjyu, A. Y. Saber, T. Funabashi, H. Sekine, and C. H. Kim, “Application of Neural Network to One-Day-Ahead 24 hours Generating Power Forecasting for Photovoltaic System,” in Proceedings of International Conference on Intelli-gent Systems Applications to Power Systems 2007, pp. 1-6, 2008.
M. Paulescu, E. Paulescu, P. Gravila, and V. Badescu, Weather Modeling and Forecasting of PV Systems Operation, Springer, 2012.
B. Espinar, J.-L. Aznarte, R. Girard, A. M. Moussa, and G. Kariniotakis, "Photovoltaic Forecasting: A state of the art," in Proceedings 5th European PV-Hybrid and Mini-Grid Conference, Spain, pp. 250-255, 2010.
J. G. da S. Fonseca, T. Oozeki, T. Takashima, G. Koshimizu, Y. Uchida, and K. Ogimoto, “Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan,” Progress in Photovoltaics Research and Applications, vol. 20, no. 7, pp. 874-882, 2012.
S. Geisser, Predictive Inference, CRC Press, 1993.
C. J. Lin and R. C. Weng, “Simple probabilistic predictions for support vector regression,” Natl. Taiwan Univ. Taipei, 2004.
J. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,” Advances in Large Margin Classifiers, vol. 10, no. 3, pp. 61-74, 1999.
J.G.S. Fonseca Jr., T. Oozeki, H. Ohtake, K. Shimose, T. Takashima, and K. Ogimoto, "Uncertainty Information in Forecasts of Photovoltaic Power Generation with Support Vector Regression: A Preliminary Study," in Proceedings of the 17th International Con-ference on intelligent System Applications to Power Systems, Japan, 2013.
J. G. da S. Fonseca Jr., T. Oozeki, H. Ohtake, T. Takashima, and K. Ogimoto, “On the Use of Maximum Likelihood Estimation and Data Similarity to Obtain Prediction Intervals for Forecasts of Photovoltaic Power Generation,” in Proceedings of the International Conference on Electrical Engineering 2014, Jeju, 2014, pp. 1181-1188.
J. G. da S. Fonseca Jr., T. Oozeki, H. Ohtake, K. Shimose, T. Takashima, and K. Ogimoto, "A Comprehensive Study of Photovoltaic Power Generation Forecasts in Multiple Locations in Japan," in Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, France, pp. 3601-3606, 2013.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.