$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] On the Use of Maximum Likelihood and Input Data Similarity to Obtain Prediction Intervals for Forecasts of Photovoltaic Power Generation 원문보기

Journal of electrical engineering & technology, v.10 no.3, 2015년, pp.1342 - 1348  

Fonseca Junior, Joao Gari da Silva (Institute of Industrial Science, University of Tokyo) ,  Oozeki, Takashi (System and Applications Team, Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology) ,  Ohtake, Hideaki (System and Applications Team, Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology) ,  Takashima, Takumi (System and Applications Team, Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology) ,  Kazuhiko, Ogimoto (Institute of Industrial Science, University of Tokyo)

Abstract AI-Helper 아이콘AI-Helper

The objective of this study is to propose a method to calculate prediction intervals for one-day-ahead hourly forecasts of photovoltaic power generation and to evaluate its performance. One year of data of two systems, representing contrasting examples of forecast’ accuracy, were used. The me...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Thus, the objective of this study is to present a simple method to calculate prediction intervals for one-day- ahead forecasts of power generation of single PV systems. The method is based on the use of the maximum likelihood estimation method, and on the concept of similarity between PV power forecasts for different hours and different days.
  • Moreover, two naive reference methods to calculate the intervals are presented. Their objective is to provide a basis of comparison to analyze the performance of the proposed method.
  • The objective of this study was to present a simple method to calculate prediction intervals for forecasts of power generation of PV systems. The method is based on the use of the maximum likelihood estimation, and on the concept of similarity between the input data used in the forecasts.

가설 설정

  • In Eq. 3 Llim and Ulim are the lower and upper limits of the prediction interval.
본문요약 정보가 도움이 되었나요?

참고문헌 (12)

  1. A. Mellit and A. M. Pavan, “A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy,” Solar Energy, vol. 84, no. 5, pp. 807-821, 2010. 

  2. E. Lorenz, D. Heinemann, H. Wickramarathne, H. G. Beyer, and S. Bofinger, "Forecast of Ensemble Power Production by Grid-Connected PV Systems," in Proceedings of the 20th European PV Conference, Italy, pp. 3.9-7.9, 2007. 

  3. A. Yona, T. Senjyu, A. Y. Saber, T. Funabashi, H. Sekine, and C. H. Kim, “Application of Neural Network to One-Day-Ahead 24 hours Generating Power Forecasting for Photovoltaic System,” in Proceedings of International Conference on Intelli-gent Systems Applications to Power Systems 2007, pp. 1-6, 2008. 

  4. M. Paulescu, E. Paulescu, P. Gravila, and V. Badescu, Weather Modeling and Forecasting of PV Systems Operation, Springer, 2012. 

  5. B. Espinar, J.-L. Aznarte, R. Girard, A. M. Moussa, and G. Kariniotakis, "Photovoltaic Forecasting: A state of the art," in Proceedings 5th European PV-Hybrid and Mini-Grid Conference, Spain, pp. 250-255, 2010. 

  6. J. G. da S. Fonseca, T. Oozeki, T. Takashima, G. Koshimizu, Y. Uchida, and K. Ogimoto, “Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan,” Progress in Photovoltaics Research and Applications, vol. 20, no. 7, pp. 874-882, 2012. 

  7. S. Geisser, Predictive Inference, CRC Press, 1993. 

  8. C. J. Lin and R. C. Weng, “Simple probabilistic predictions for support vector regression,” Natl. Taiwan Univ. Taipei, 2004. 

  9. J. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,” Advances in Large Margin Classifiers, vol. 10, no. 3, pp. 61-74, 1999. 

  10. J.G.S. Fonseca Jr., T. Oozeki, H. Ohtake, K. Shimose, T. Takashima, and K. Ogimoto, "Uncertainty Information in Forecasts of Photovoltaic Power Generation with Support Vector Regression: A Preliminary Study," in Proceedings of the 17th International Con-ference on intelligent System Applications to Power Systems, Japan, 2013. 

  11. J. G. da S. Fonseca Jr., T. Oozeki, H. Ohtake, T. Takashima, and K. Ogimoto, “On the Use of Maximum Likelihood Estimation and Data Similarity to Obtain Prediction Intervals for Forecasts of Photovoltaic Power Generation,” in Proceedings of the International Conference on Electrical Engineering 2014, Jeju, 2014, pp. 1181-1188. 

  12. J. G. da S. Fonseca Jr., T. Oozeki, H. Ohtake, K. Shimose, T. Takashima, and K. Ogimoto, "A Comprehensive Study of Photovoltaic Power Generation Forecasts in Multiple Locations in Japan," in Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, France, pp. 3601-3606, 2013. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로