$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Structural Identification of a Non-Glycosylated Variant at Ser126 for O-Glycosylation Site from EPO BRP, Human Recombinant Erythropoietin by LC/MS Analysis 원문보기

Molecules and cells, v.38 no.6, 2015년, pp.496 - 505  

Byeon, Jaehee (Deptatment of Stereoscopic Media, Korean German Institute of Technology) ,  Lim, Yu-Ri (BIOnSYSTEMS, Inc., R&D Center) ,  Kim, Hyong-Ha (Center for Bioanalysis, Korea Research Institute of Standards and Science) ,  Suh, Jung-Keun (Deptatment of Stereoscopic Media, Korean German Institute of Technology)

Abstract AI-Helper 아이콘AI-Helper

A variant peak was detected in the analysis of RP-HPLC of rHu-EPO, which has about 7% relative content. Fractions of the main and the variant peaks were pooled separately and further analyzed to identify the molecular structure of the variant peak. Total mass analysis for each peak fraction using ES...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • To clarify the difference of molecular masses between Peak M and Peak V, peptide mapping analysis was carried out using UPLC/ESI-MS. First, a method for peptide mapping for rHu- EPO was developed for the UPLC with on-line Q-TOF system to check if glycopeptides having O-glycosylation can be detected. Peptide mapping was carried out with endo-protease Asp-N or Glu-C treatment and subsequent separation of peptide fragments by RP-UPLC.
  • 6  250 mm). For quantification, RP-HPLC was performed using the following gradient conditions: solvent A was 0.1% TFA and solvent B was 0.1% TFA, 10% water, and 90% ACN. Protein samples were injected with the volume of 100 l and a flow rate of 0.
  • First, a method for peptide mapping for rHu- EPO was developed for the UPLC with on-line Q-TOF system to check if glycopeptides having O-glycosylation can be detected. Peptide mapping was carried out with endo-protease Asp-N or Glu-C treatment and subsequent separation of peptide fragments by RP-UPLC. The peptide fragments were identified by UV monitoring and on-line Q-TOF mass spectrometry.
  • RP-HPLC analysis was carried out using a Waters Alliance HPLC system equipped with a Waters 2489 UV/Visible detector (Waters, UK). Peak profiling was carried out using a VYDAC214TP54 column (C4, 300A, 5 m, 4.
  • To identify the structural characteristics of each peak, fractions having corresponding peaks were eluted and collected. The collected fractions were analyzed using ESI-MS to determine molecular weight for those peaks.
  • We confirmed that the method developed for peptide map-ping analysis of rHu-EPO is suitable for identifying D16 and E14 peptides with or without O-glycosylation. This method for peptide mapping was applied to the fractions having corresponding peaks from RP-HPLC analysis to analyze mass difference between two fractions.
  • To clarify the difference of molecular masses between Peak M and Peak V, peptide mapping analysis was carried out using UPLC/ESI-MS. First, a method for peptide mapping for rHu- EPO was developed for the UPLC with on-line Q-TOF system to check if glycopeptides having O-glycosylation can be detected.

대상 데이터

  • To identify deglycosylated peptides, the peptides were separated using an RP-UPLC equipped with an ACQUITY BEH300 C18 column (1.7 μm 2.1 x 150 mm).

이론/모형

  • 5. Fragmentation spectra of D16 peptide of Asp-N map (A) and E14 peptide of Glu-C map (B) from the fractions of RP-HPLC using the purity method. The precursor ion having 1103 m/z of Asp-N map and 1393 m/z of Glu-C map from the fraction of Peak M was fragmented and the structure of O-glycosylation (O-G1-2SA) was confirmed by the product ions.
  • 4. Identifcation of D16 peptide of Asp-N map (A) and E14 peptide of Glu-C map (B) on the MS1 spectrum of peptide map from the fractions of RP-HPLC using the purity method. Peak M represents the main peak fraction from Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Castilho A Neumann L Daskalova S Mason HS Steinkellner H Altmann F Strasser R 2012 Engineering of sialylated mucin-type O-glycosylation in plants J. Biol. Chem. 287 36518 36526 22948156 

  2. Cazzola M Mercuriali F Brugnara C 1997 Use of recombinant human erythropoietin outside the setting of uremia Blood 89 4248 4267 9192747 

  3. Council of Europe 2007 European Pharmacopoeia 6th eds Strasbourg, France Council of Europe 

  4. Davis JM Arakawa T Strickland TW Yphantis DA 1987 Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells Biochemistry 26 2633 2638 3607040 

  5. Delorme E Lorenzini T Giffin J Martin F Jacobsen F Boone T Elliott S 1992 Role of glycosylation on the secretion and biological activity of erythropoietin Biochemistry 31 9871 9876 1390770 

  6. Dudkiewicz-Wilczyńska J Snycerski A Tautt J 2002 Application of high-performance size exclusion chromatography to the determination of erythropoietin in pharmaceutical preparations Acta pol. Pharm. 59 83 86 12365609 

  7. Elliott S Egrie J Browne J Lorenzini T Busse L Rogers N Ponting I 2004 Control of rHuEPO biological activity: the role of carbohydrate Exp. Hematol. 32 1146 1155 15588939 

  8. Fukuda MN Sasaki H Lopez L Fukuda M 1989 Survival of recombinant erythropoietin in the circulation: the role of carbohydrates Blood 73 84 89 2910371 

  9. Giménez E Ramos-Hernan R Benavente F Barbosa J Sanz-Nebot V 2012 Analysis of recombinant human erythropoietin glycopeptides by capillary electrophoresis electrospray– time of flight-mass spectrometry Anal. Chim. acta 709 81 90 22122935 

  10. Goldwasser E Kung CK 1968 Progress in the purification of erythropoietin Ann. N Y Acad. Sci 149 49 53 5240743 

  11. Gong B Burnina I Stadheim TA Li H 2013 Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry J. Mass Spectrom. 48 1308 1317 24338886 

  12. Hokke CH Bergwerff AA Dedem GW Kamerling JP Vliegenthart JF 1995 Structural analysis of the sialylated N-and O-linked carbohydrate chains of recombinant human erythropoietin expressed in chinese hamster ovary cells Eur. J. Biochem. 228 981 1008 7737204 

  13. Kolarich D Jensen PH Altmann F Packer NH 2012 Determination of site-specific glycan heterogeneity on glycoproteins Nat. Protoc. 7 1285 1298 22678432 

  14. Llop E Gutiérrez-Gallego R Segura J Mallorquí J Pascual JA 2008 Structural analysis of the glycosylation of gene-activated erythropoietin (epoetin delta, Dynepo) Anal. Biochem. 383 243 254 18804089 

  15. Rane SS Ajameri A Mody R Padmaja P 2012 Development and validation of RP-HPLC and RP-UPLC methods for quantification of erythropoietin formulated with human serum albumin J. Pharm. Anal. 2 160 165 

  16. Sasaki H Bothner B Dell A Fukuda M 1987 Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA J. Biol. Chem. 262 12059 12076 3624248 

  17. Sasaki H Ochi N Dell A Fukuda M 1988 Site-specific glycosylation of human recombinant erythropoietin: analysis of glycopeptides or peptides at each glycosylation site by fast atom bombardment-mass spectrometry Biochemistry 27 8618 8626 3219367 

  18. Song KE Byeon J Moon DB Kim HH Choi YJ Suh JK 2014 Structural identification of modified amino acids on the interface between EPO and its receptor from EPO BRP, human recombinant erythropoietin by LC/MS analysis Mol. Cells 37 819 826 25284312 

  19. Spivak JL 1998 The biology and clinical applications of recombinant erythropoietin Semin. Oncol. 25 7 11 9671323 

  20. Spivak JL Hogans BB 1989 The in vivo metabolism of recombinant human erythropoietin in the rat Blood 73 90 99 2462945 

  21. Stübiger G Marchetti M Nagano M Grimm R Gmeiner G Reichel C Allmaier G 2005 Characterization of N-and O-glycopeptides of recombinant human erythropoietins as potential biomarkers for doping analysis by means of microscale sample purification combined with MALDI-TOF and quadrupole IT/RTOF mass spectrometry J. Cell. Sci. 28 1764 1778 

  22. Sytkowski AJ 2004 Erythropoietin: blood, brain and beyond Weinheim, Germany Wiley-VCH Verlag 

  23. Toyoda T Itai T Arakawa T Aoki KH Yamaguchi H 2000 Stabilization of human recombinant erythropoietin through interactions with the highly branched N-glycans J. Biochem. 128 731 737 11056384 

  24. Tsuda E Kawanishi G Ueda M Masuda S Sasaki R 1990 The role of carbohydrate in recombinant human erythropoietin Eur. J. Biochem. 188 405 411 2156701 

  25. Wasley LC Timony G Murtha P Stoudemire J Dorner AJ Caro J Krieger M Kaufman RJ 1991 The importance of N-and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin Blood 77 2624 2632 2043765 

  26. Wilczyńska JD Roman I Anuszewska E 2005 The separation of EPO from other proteins in medical products formulated with different stabilizers Acta Pol. Pharm. 62 177 182 16193809 

저자의 다른 논문 :

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로