$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내콩 4품종의 LC-MS 기반 비표적대사체 비교평가
Comparative untargeted metabolomic analysis of Korean soybean four varieties (Glycine max (L.) Merr.) based on liquid chromatography mass spectrometry 원문보기

Journal of applied biological chemistry, v.65 no.4, 2022년, pp.439 - 446  

김은하 (Biosafety Division, National Institute of Agricultural Sciences) ,  박수윤 (Biosafety Division, National Institute of Agricultural Sciences) ,  이상구 (Biosafety Division, National Institute of Agricultural Sciences) ,  박현민 (Biosafety Division, National Institute of Agricultural Sciences) ,  유오숙 (Biosafety Division, National Institute of Agricultural Sciences) ,  강윤녕 (Biosafety Division, National Institute of Agricultural Sciences) ,  김명지 (Biosafety Division, National Institute of Agricultural Sciences) ,  정정원 (Biosafety Division, National Institute of Agricultural Sciences) ,  오선우 (Biosafety Division, National Institute of Agricultural Sciences)

초록
AI-Helper 아이콘AI-Helper

콩은 양질의 단백질과 지방산이 풍부하며, 세계적으로 가장 많이 사용되는 형질전환작물(GM) 중 하나이다. 국내에서 GM콩은 주로 광안을 모본으로 하여 개발되고 있는 상황이다. 본 연구에서는 비표적 LC-MS 기반 대사체 분석기술을 이용하여 2020년도에 군위와 전주에서 재배한 광안과 세 일반콩의 대사체 프로파일을 비교분석 하였다. Partial least square-discriminant analysis (PLS-DA) 분석을 통하여 대사체 프로파일들은 품종별로 잘 분리되었으며, 페닐알라닌이소플라본, 지방산을 포함하여 18종 물질이 관여하는 것으로 확인하였다. PLS-DA 스코어 플롯에서 콩 4품종은 지역별로 클러스터를 형성하였으며, 이는 재배환경이 대사물질의 변화에 영향을 준 것으로 판단된다. 광안은 다른 품종들에 비하여 이소플라본 함량이 가장 낮았으며, 리놀렌산 함량은 가장 높았다. 광안을 이용하여 개발된 생명공학콩의 실질적동등성 평가의 경우 광안의 대사체 프로파일 특성을 고려한 비교품종 선정 등에 관하여 고찰하였다.

Abstract AI-Helper 아이콘AI-Helper

Soybean is a crop with high-quality of protein and oil, and it is one of the most widely used genetically modified (GM) crops in the world today. In South Korea, Kwangan is the most utilized variety as a parental line for GM soybean development. In this study, untargeted LC-MS metabolomic approaches...

주제어

참고문헌 (35)

  1. ISAAA (2021) Pocket K No. 16: Biotech Crop Highlight in 2019. International Service for the Acquisition of Agri-biotech Applications. Updated May 2021 http://www.isaaa.org/kc? 

  2. Lee KJ, Park HJ, Yi BY, Lee KR, Kim MS, Woo HJ, Jin YM, Kwon SJ (2008) Development of herbicide tolerant soybean using Agrobacterium thumfaciens. J Plant Biotechnol 35: 69-74. doi: 10.5010/JPB.2008.35.1.069? 

  3. Jeon EH, Chung Y-S (2009) Development of genetic transformation method of Korean soybean. J Plant Biotechnol 36: 344-351. doi: 10.5010/JPB.2009.36.4.344? 

  4. Kim DG, Kantayos V, Kim DK, Park HG, Kim HH, Rha ES, Lee SC, Bae CH (2016) Plant regeneration by in vitro tissue culture in Korean soybean (Glycine max L.). Koren J Plant Res 29: 143-153. doi: 10.7732/kjpr.2016.29.1.143? 

  5. Cho C, Kim D-Y, Choi M-S, Jin M, Seo M-S (2021) Efficient isolation and gene transfer of protoplast in Korean soybean (Glycine Max (L.) Merr.) cultivars. Korean J Breed Sci 53: 230-239. doi: 10.9787/KJBS.2021.53.3.230? 

  6. Seo M-S, Cho C, Jeong N, Sung S-K, Choi M-S, Jin M, Kim D-Y (2021) In vitro tissue culture frequency and transformation of various cultivars of soybean (Glycine max (L.) Merr.). Korean J Plant Res 34: 278-286. doi: 10.7732/kjpr.2021.34.4.278? 

  7. Yeom WW, Kim HY, Lee K-R, Cho HS, Kim J-Y, Jung HW, Oh S-W, Jun SE, Kim HU, Chung Y-S (2020) Increased production of α-linolenic acid in soybean seeds by overexpressing of Lesquerella FAD3-1. Front Plant Sci 10: 1812. doi: 10.3389/fpls.2019.01812? 

  8. Kim M-J, Kim JK, Kim HJ, Pak JH, Lee J-H, Kim D-H, Lee D-H, Choi HK, Ho WJ, Lee J-D, Chung Y-S, Ha S-H (2012) Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. Plos ONE 7: e48287. doi: 10.1371/journal.pone.0048287? 

  9. Kim HJ, Cho HS, Pak JH, Kwon T, Lee J-H, Kim D-H, Lee DH, Kim C-G, Chung Y-S(2018) Confirmation of drought tolerance of ectopically expressed AtABF3 gene in soybean. Mol Cells 4: 413-422. doi: 10.14348/molcells.2018.2254? 

  10. Cho HS. Lee DH, Jung HW, Oh S-W. Kim HJ, Chung Y-S (2019) Evaluation of yield components from transgenic soybean overexpressing chromatin architecture-controlling ATPG8 and ATPG10 genes. Plant Breed Biotech 7: 34-41. doi: 10.9787/PBB.2019.7.1.34? 

  11. Song JH, Shin GS, Kim HJ, Lee SB, Moon JY, Jeong JC, Choi H-K, Kim IA, Song HJ, Kim CY, Chung Y-S (2022) Mutation of GmIPK1 gene using CRISPR/Cas9 reduced phytic acid content in soybean seeds. Int J Mol Sci 23: 10583. doi: 10.3390/ijms231810583? 

  12. OECD (1993) Safety evaluation of foods derived by modern biotechnology; Concepts and Principles. Organization of Economic Cooperation and Development (OECD), Paris, France? 

  13. Codex Alimentarius (2003) Guideline for the donduct of food safety assessment of foods derived from recombinant-DNA plants. CAC/GL45-2003, Geveva? 

  14. Oh S-W, Kim E-H, Lee S-Y, Baek D-Y, Lee S-G. Kang H-J. Chung Y-S. Park S-K, Ryu T-H (2021) Compositional equivalence assessment of insect-resistant genetically modified rice using multiple statistical analyses. GM Crops & Food 12: 303-314. doi: 10.1080/21645698.2021.1893624? 

  15. Christ B. Pluskai T, Aubry S, Weng JK (2018) Contribution of untargedted metabolomics for future assessment of biotech crops. Trends Plant Sci 24: 1047-1056. doi: 10.1016/j.tplants.2018.09.011? 

  16. Fraser PD, Aharoni A, Hall RD, Huang S, Giovannoni JJ, Sonnewald U, Fernie AR (2020) Metabolomics should be deployed in the identification and characterization of gene-edited crips. Plant J 102: 897-902. doi: 10.1111/tpj.14679? 

  17. Zhou J, Ma C, Xu H, Yuan K, Lu X, Zhu Z, Wu Y, Xu G (2009) Metabolic profiling of transgenic rice with cry1Ac and sck genes: an evaluation of unintended effects at metabolic level by using GC-FID and GC-MS. J Chromatogr B 877: 725-732. doi: 10.1016/j.jchromb.2009.01.040? 

  18. Clarke JD, Alexander DC, Ward DP, Ryals JA, Mitchell MW, Wulff JE, Guo L (2013) Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome. Scientific Rep 3: 6? 

  19. Wang XJ, Zhang X, Yang JT, Wang ZX (2018) Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes. Plant J 93: 1007-1016. doi: 10.1111/tpj.13825? 

  20. John KMM, Natarajan S, Luthria DL (2016) Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions. Food Chem 211: 347-355. doi: 10.1016/j.foodchem.2016.05.055? 

  21. Lee SJ, Yan W, Ahn JK, Chung IM (2003) Effects of year, site, genotype, and their interactions on various soybean isoflavones. Field Crops Res 81: 181-192. doi: 10.1016/S0378-4290(02)00220-4? 

  22. Kim YJ, Park YJ, Oh S-D, Yoon JS, Kim JG, Seo J-S, Park J-H, Kim C-G, ParkS-Y, ParkS-K, Choi M-S, Kim JK (2022) Effects of genotype and environment on the nutrient and metabolic profiles of soybeans genetically modified with epidermal growth factor or thioredoxin compared with conventional soybeans. Ind Crops Prod 175: 114229. doi: 10.1016/j.indcrop.2021.114229? 

  23. Gu S, Son Y, Park JY, Choi S-G, Lee M, Kim H-J (2019) Analysis of the seed metabolite profiles and antioxidant activity of perilla variation. Korean J Food Sci and Technol 51: 193-199. doi: 10.9721/KJFST.2019.51.3.193? 

  24. Kudou S, Flenry Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K (1991) Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric Biol Chem 55: 2227-2233. doi: 10.1080/00021369.1991.10870966? 

  25. Kim HM, Jang EK, Gwak BS. Hwang TY, Yun GS, Hwang SG, Jeong HS, Kim HS (2018) Variation of isoflavone contents and classification using multivariate analysis in Korean soybean varieties released from 1913 to 2013. Korean J Breed Sci 50: 50-60. doi: 10.9787/KJBS.2018.50.1.50? 

  26. Yoon H, Yi J, Desta K, Shin M-J, Lee Y, Lee S. Wang X, Choi Y-M, Lee S (2021) Yearly variation of isoflavone composition and yield-related traits of 35 Korean soybean germplasm. Korean J Breed Sci 53: 411-423. doi: 10.9787/KJBS.2021.53.4.411? 

  27. Hemingway J, Eskandari M, Rajcan I (2015) Genetic and environmental effects on fatty acid composition in soybeans with potential use in the automotive industry. Crop Sci 55: 658-668. doi: 10.2135/cropsci2014.06.0425? 

  28. Yoshiki Y, Kudou S, Okubo K (1998) Relationship between chemical structures and biological activities of triterpenoid saponins from soybean. Biosci Biotechnol Biochem 62: 2291-2299. doi: 10.1271/bbb.62.2291? 

  29. Berhow MA, Kong SB, Vermillion KE, Duval SM (2006) Complete quantification of group A and group B soyasaponins in soybeans. J Agric Food Chem 54: 2035-2044. doi: 10.1021/jf053072o? 

  30. Nam J-H, Jeong J-C, Yoon Y-H, Hong S-Y, Kim S-J, Jin Y-I, Jee S-N, Kim H-S, Ok H-C, Nho C-W, Pan C-H (2012) Comparison of soyasaponin group B contents in soybean seed by different cultivars and regional background. Korean J Plant Res 25: 394-400. doi: 10.7732/kjpr.2012.25.4.394? 

  31. Seguin P, Chennupati P, Tremblay G, Liu W (2014) Crop management, genotypes, and environmental factors affect soyasaponin B concentration in soybean. J Agric Food Chem 62: 7160-7165. doi: 10.1021/jf500966t? 

  32. Hong S-Y, Kim S-J, Sohn H-B, Kim Y-H, Cho K-S (2018) Comparison of isoflavone content in 43 soybean varieties adapted to highland cultivation areas. Korean J Breed Sci 50: 442-452. doi: 10.9787/KJBS.2018.50.4.442? 

  33. Tsukamoto C, Shimada S, Igita K, Kudou S, Kokubun M, Okubo K, Kitamura K (1995) Factors affecting isoflavones content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J Agric Food Chem 43: 1184-1192. doi: 10.1021/jf00053a012? 

  34. Lozovaya VV, Lygin AV, Ulanov AV, Nelson RL, Dayde J, Widholm JM (2005) Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci 45: 1934-1940. doi: 10.2135/cropsci2004.0567? 

  35. OECD (2012) Revised Consensus Document on Compositional Considerations for New Varieties of Soybean [Glycine max (L.) Merr]: Key Food and Feed Nutrients, Anti-nutrients, Toxicants and Allergens. Series on Harmonization of Regulatory Oversight in Biotechnology No. 25, OECD Publishing, Paris 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로