$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

혼합모드 하중을 받는 균열시편의 피로균열진전거동 평가
Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads 원문보기

大韓機械學會論文集. Transactions of the Korean Society of Mechanical Engineers. A. A, v.39 no.7, 2015년, pp.693 - 700  

한정우 (한국기계연구원 기계시스템안전연구본부) ,  우은택 (동아대학교 기계공학과) ,  한승호 (동아대학교 기계공학과)

초록
AI-Helper 아이콘AI-Helper

혼합모드 피로하중을 받는 균열을 갖은 CTS 시편에 대하여 균열경로 예측이론과 Tanaka 의 등가 응력확대계수식을 적용하여 피로균열진전거동을 평가하였다. 새롭게 생성되는 균열선단의 응력확대계수 산정은 ANSYS 를 이용한 유한요소법을 통해 이루어졌고, 균열경로와 균열증분은 마이크로소프트 엑셀에 프로그래밍한 균열경로예측식과 Paris 식으로 계산되었다. 균열증분으로 새롭게 생성된 균열선단의 기하학적인 정보는 엑셀의 기능을 이용해 ANSYS 의 KSCON 명령어가 인식할 수 있게 변화시켜 균열모델링을 용이하게 하였다. 반복적인 균열해석을 위해 유한요소법과 엑셀을 결합한 FECTUM(Finite Element Crack Tip Updating Method)을 개발하였다. 개발된 FECTUM 을 편측 3 점 굽힘을 통해 혼합모드의 구현이 가능한 SENB 시편(Single Edge Notched Bend Specimen)에 적용해본 결과, 균열경로는 물론 파단될 때까지의 피로하중 반복수의 차이가 3% 미만으로 잘 일치하는 모습을 보여, 개발된 기법의 타당성을 검증하였다.

Abstract AI-Helper 아이콘AI-Helper

To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka's equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • (a)의 mode I 하중·경계조건을 만족하는 피로하중을 초기피로균열길이가 a/W=0.3(피로 예균열길이=5mm 포함)에 도달할 때까지 가하였다.
  • - MSED(Minimum Strain Energy Density Criterion) : Sih(18)가 제안한 최소변형에너지밀도기법은 변형에너지밀도계수 S 를 기초로 하며, 균열은 S 가 최소값을 갖는 방향으로 진전한다고 가정하였다.
  • - MTS(Maximum Tangential Stress Criterion) : 최대접선 응력기법이라 불리는 MTS 기법은 Erdogan 등(16)이 제안한 방법으로 균열은 재료의 기계적 특성과 관계없이 균열선단의 최대접선응력방향으로 진전한다고 가정하였다. 수식이 간단하고 균열진전방향을 비교적 잘 묘사하기 때문에 널리 사용되고 있다.
  • 에 의해 다음과 같은 식으로 나타낼 수 있다. 균열은 에너지해방률 G 가 최대값이 되는 방향으로 진전한다고 가정하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Kim, T. Y. and Kim, H. K., 2013, "Mixed-mode Fatigue Crack Growth Behavior of Fully Lower Bainite Steel," Mat. Sci. & Eng. A, Vol. 580, pp. 322-329. 

  2. Boljanovic, S. and Maksimovic, S., 2011, "Analysis of the Crack Growth Propagation Process Under Mixed-Mode Loading," Eng. Fract. Mech., Vol. 78, pp. 1565-1576. 

  3. Rozumek., D. and Macha., E., 2009, "A Survey of Failure Criteria and Parameters in Mixed-mode Fatigue Crack Growth," Materials Science, Vol. 45, No. 2, pp. 190-210. 

  4. Richard, H. A., Fulland, M. and Sander, M., 2004, "Theoretical Crack Path Prediction," Fatigue & Fract. Eng. Mater. Struct., Vol. 28, pp. 3-12. 

  5. Richard, H. A., Sander, M. and Fulland, M., 2003, "Fatigue Crack Paths Under Complex Loading," In: Fatigue Crack Path (Edited by Carpinteri, A. and Pook, L.), Int. Conference on Fatigue Crack Paths, Parma. 

  6. Biner, S. B., 2001, "Fatigue Crack Growth Studies Under Mixed-mode Loading," Int. J. Fatigue, Vol. 23, Supplement, pp. S259-S263. 

  7. Richard, H. A., 1985, "Bruchvorhersagen bei uberlagerter normal-und Schubeeanspruchung von Rissen," VDI-Verlag, Dusseldorf, pp. 1-60. 

  8. Paris, P. C. and Erdogan, F., 1963, "A Critical Analysis of Crack Propagation Laws," J. Basic. Eng., Trans. ASME, 85, pp. 528-534. 

  9. Paris, P. C., 1962, "The Growth of Fatigue Cracks due to Variations in Load," Ph. D. Thesis, Lehigh University. 

  10. Koo, J. M., 2002, "A Study on the Fatigue Test in A5052 Alloy Sheet Under Mixed Mode Loading," Trans. Korean Soc. Mech. Eng. A, Vol. 26, No. 5, pp. 828-834. 

  11. Miran, A. C. O., Meggiolaro, M. A., Castro, J. T. P., Martha, L. F., and Biteencourt, T. N., 2003, "Fatigue Life and Crack Path Predictions in Generic 2D Structural Components," Engineering Fracture Mechanics, Vol. 70, pp. 1259-1279. 

  12. Forth, S. C., Favrow, L H., Keat, W. D. and Newman, J. A., 2003, "Three-dimensinal Mixed-Mode Fatigue Crack Growth in a Functionally Graded Titanium Alloy," Engineering Fracture Mechanics, Vol. 70, pp. 2175-2185. 

  13. Yan, X., Zhang, Z. and S. Du, 1992, "Mixed Mode Fracture Criteria for the Materials with Different Yield Strengths in Tension and Compression." Engineering Fracture Mechanics, Vol. 42, pp. 109-116. 

  14. Rhee, H. C. and M. M. Salama, 1987, "Mixed-mode Stress Intensity Factor Solutions of a Warped Surface Flaw by Three-dimensional Finite Element Analysis." Engineering Fracture Mechanics, Vol. 28, pp. 203-209. 

  15. Tanaka, K., 1974, "Fatigue Crack Propagation from a Crack Inclined to the Cyclic Tensile Axis." Engineering Fracture Mechanics, Vol. 6, pp. 493-507. 

  16. Erdogan, F. and Sih, G. C., 1963, "On the Crack Extension in Plates Under Plane Loading and Transverse Shear," J. of Basic Eng., Vol. 85, Iss. 4, pp. 519-525. 

  17. Hussain, M. A., Pu, S. L. and Underwood, J. H., 1993, "Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II," In : P. C. Paris and G. R. Irwin (Eds.), Fracture Analysis, ASTM STP 560, American Society for Testing and Materials, pp. 2-28. 

  18. Sih, G. C., 1974, "Stain Energy Density Factor Applied to Mixed Mode Crack Problems," International Journal of Fracture, Vol. 20, pp. 305-321. 

  19. Richard, H. A. and Benitz, K., 1983, "A Loading Device for the Creation of Mixed Mode in Fracture Mechanics," International Journal of Fracture, Vol. 22, pp. 55-58. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로