$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수치해석 모델링을 이용한 교차 흐름 미세유체 액적 생성 디바이스 채널 교차각이 액적 직경에 미치는 영향
Effect of Intersection Angle of the Flow-focusing Type Droplet Generation Device Channel on Droplet Diameter by using Numerical Simulation Modeling 원문보기

Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering, v.36 no.3, 2015년, pp.61 - 68  

김상진 (전북대학교 수의과대학 약리학교실) ,  강형섭 (전북대학교 수의과대학 약리학교실) ,  양영석 (우석대학교 제약공학과) ,  김기범 (전북대학교 수의과대학 약리학교실)

Abstract AI-Helper 아이콘AI-Helper

In this paper, we studied the effects of intersection angles of the flow-foucusing type droplet generation device inlet channel on droplet diameter using numerical simulation modeling. We modeled different intersection angles with a fixed continuous channel width, dispersed channels width, orifices ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 앞에서 언급한 바와 같이 액적의 직경과 형태를 조절하기 위해서 많은 연구자들[15-29]은 유체의 유속, 점성과 디바이스의 구조 특히 유입채널의 직경 또는 두 유체가 교차는 부분을 T자 형태 또는 십자 형태의 구조에서만 연구가 진행되어 왔다. 그래서 본 연구에서는 액적 기반 미세유체 디바이스에서 유체가 유입되는 유입 채널의 구조적 변화 다시 설명하면 유입 채널의 교차각(intersection angle)이 액적 직경 변화에 어떠한 영향을 미치는가를 전산유체역학 모델링을 통하여 액적 직경과 교차각의 상관관계를 파악하였다.
  • 기존의 연구에서는 액적의 직경을 조절하기 위하여 유체의 유속과 디바이스의 직경을 변화 시켰다. 그러나 본 연구에서는 유체가 유입되는 유입 채널의 각도가 액적의 직경 변화에 어떠한 영향을 미치는가에 대하여 모델링 하였다. 그 결과 두 유입 채널의 교차각이 0< θ < 90o에서는 액적의 직경이 감소하였지만, 90o에서는 큰 직경의 액적이 생성되었다.

가설 설정

  • 디바이스의 두께는 15 μm로 동일하다고 가정하였다.
  • 01e−3 pa·s로 가정하였다. 또한 두 유체는 비압축성 유체라고 가정하였으며 디바이스의 벽은 젖은벽(wet wall)으로 설정하였다. 두 유체의 부피 유랑은 분산상 흐름 유체의 유량은 1 μl/h로 고정하였으며, 연속상 흐름 유체의 유량은 1 - 30 μl/h로 변화시켰다.
  • 또한 오리피스(orifice)의 폭 (wor)은 25 μm로 분산상 흐름 채널의 폭과 동일하다고 가정하였으며 확대 관의 폭(we)은 100 μm로 가정하였다.
  • 또한 증류수는 938.2 kg/m3 , 동점도(υ)는 1.01e−3 pa·s로 가정하였다.
  • 모델링에 이용된 오일의 밀도(ρ)는 8.6e2 kg/m3 , 동점도(υ)는 0.12358 pa·s, 표면장력(σ)은 3.65e−3 N/m, 접촉각(contact angle, θ )은 80o로 가정하였다.
  • 연속상 흐름 채널은 그림 1(b) 에서 표시된 것과 같이 위/아래에서 유입되는 채널로 오일이 흐른다고 가정하였으며 폭(wc)은 50 μm이며, 분산상 흐름 채널은 가운데 채널로 증류수가 흐른다고 가정하였으며 폭(wd)은 25 μm로 가정하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
Lab-on-a-chip 기술에서 중요한 것은 무엇인가? 이러한 Lab-on-a-chip 기술에서 중요한 것 중 하나는 액 적의 제어이다. 여기에서 액적은 서로 섞이지 않는 두 유체에서 형성된 방울을 의미한다.
액적이란 무엇인가? 이러한 Lab-on-a-chip 기술에서 중요한 것 중 하나는 액 적의 제어이다. 여기에서 액적은 서로 섞이지 않는 두 유체에서 형성된 방울을 의미한다. 생화학이나 의료분야에서 시료를 외부의 오염으로부터 어떻게 보호할 수 있는 지가 중요하며 액적의 경우 이를 감싸는 연속상 유체가 액적을 외부 오염으로부터 보호한다는 점에서 장점을 갖는다.
미세유체(microfludics)에서 액적 생성(droplet generation) 기술의 장점은 무엇인가? 최근에 미세유체(microfludics)에서 액적 생성(droplet generation) 기술은 마이크로 크기의 미세유로를 기반으로 마이크로 또는 그 이하 단위의 작은 직경의 액적(droplet) 을 생성하여 의공학, 생물학, 화학공학과 의약학 등의 다양한 분야에서 연구와 응용되고 있다[1-5]. 이와 같은 기술은 Lab-on-a-chip의 기본 기술로 많은 각광을 받고 있으며[6-8], 미세유체 디바이스는 값비싼 시약을 소량만으로 실험이 가능하여 비용이 절감되는 장점이 있다. 또한, 이 기술은 반응 시간의 단축, 다양한 조건의 실험을 하나의 디바이스 내에서 한 번에 수행할 수 있으며 높은 처리 속도 등의 장점이 갖고 있어, 지난 십 수년간 많은 연구가 진행되어 왔다[9,10].
질의응답 정보가 도움이 되었나요?

참고문헌 (46)

  1. Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB and Demello AJ, "Microdroplets: A Sea of Applications?," Lab Chip, vol. 8, no. 8, pp. 1244-1254, 2008. 

  2. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F and Huck WTS, "Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology," Angew Chem Int Edit, vo. 49, no. 34, pp. 5846-5868, 2010. 

  3. Kovarik ML, Gach PC, Ornoff DM, Wang YL, Balowski J, Farrag L and Allbritton NL, "Micro Total Analysis Systems for Cell Biology and Biochemical Assays," Anal Chem, vol. 84, no. 2, pp. 516-540, 2012. 

  4. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F and Huck WTS, "Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology;" Angew Chem Int Ed Engl, vol. 49, no 34, pp. 5846- 5868, 2010. 

  5. The SY, Lin R, Hung LH and Lee AP, "Droplet microfluidics," Lab Chip, vol. 8, no. 2, pp. 198-220, 2008. 

  6. Whitesides GM, "The Origins and the Future of Microfluidics," Nature, vol. 442, no. 7101, pp. 368-373, 2006. 

  7. Song HM and Lee CS, "Simple Fabrication of Functionalized Surface with Polyethylene Glycol Microstructure and Glycidyl Methacrylate Moiety for the Selective Immobilization of Proteins and Cells," Korean J Chem Eng, vol. 25, no. 6, pp. 1467-1472, 2008. 

  8. Lee JH, Kim HE, Im JH, Bae YM, Choi JS, Huh KM and Lee CS, "Preparation of Orthogonally Functionalized Surface Using Micromolding in Capillaries Technique for the Control of Cellular Adhesion," Colloids Surf B: Biointerfaces, vol. 64, no 1, pp. 126-134, 2008. 

  9. Chiu DT, Lorenz RM and Jeffries GDM, "Droplets for Ultrasmall- Volume Analysis," Anal Chem, vol. 81, no. 13, pp. 5111-5118, 2009. 

  10. Whitesides GM, "The origins and the future of microfluidics," Nature, vol. 442, no. 7101, pp. 368-373, 2006. 

  11. Kobayashi I, Uemura K and Nakajima M, "Formulation of monodisperse emulsions using submicron-channel arrays," Colloid Surface A-Physicochem Eng Asp, vol. 296, no. 1-3, pp. 285-289, 2007. 

  12. Fair R, "Digital microfluidics: is a true lab-on-a-chip possible?," Microfluid Nanofluidics, vol. 3, no 3, pp. 245-281, 2007. 

  13. Jung JH, Choi CH, Hwang TS and Lee CS, "Efficient In situ Production of Monodisperse Polyurethane Microbeads in Microfluidic Device using Increase of Residence Time of Droplets," Biochip J, vol. 3, no. 1, pp. 44-49. 2009. 

  14. Garstecki P, Fuerstman MJ, Stone HA and Whitesides GM, "Formation of Droplets and Bubbles in a Microfluidic Tjunction- scaling and Mechanism of Break-up," Lab Chip, vol. 6, no. 3, pp. 437-446, 2006. 

  15. Dendukuri D, Tsoi K., Hatton TA and Doyle PS, "Controlled synthesis of nonspherical microparticles using microfluidics, " Langmuir, vol. 21, no. 6, pp. 2113-2116, 2005. 

  16. Christopher GF and Anna SL, "Microfluidic methods for generating continuous droplet streams," J Phys D: Appl Phys, vol. 40, pp. R319-R336, 2007. 

  17. Garstecki P, Fuerstman MJ, Stone HA and Whitesides GM, "Formation of droplets and bubbles in a microfluidics Tjunction- scaling and mechanism of break-up," Lab Chip, vol. 6, no. 3, pp. 437-446, 2006. 

  18. Adzima BJ and Velankar SS, "Pressure drops for droplet flows in microfluidic channels," J Micromech Microeng, vol. 16, no. 8, pp. 1504-1510, 2006. 

  19. Gupta A, Murshed SMS and Kumar R, "Droplet formation and stability of flows in a microfluidics T-junction," Appl Phys Lett, vol. 94, no. 16, pp. 164107-1-164107-4, 2009. 

  20. Gupta A and Kumar R, "Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction," Microfluid Nanofluid, vol. 8, no. 6, pp. 799-812, 2010. 

  21. Tan J, Li SW, Wang K and Luo GS, "Gas-liquid flow in Tjunction microfluidics devices with a new perpendicular rupturing flow route," Chem Eng J, vol. 146, no. 3, pp. 428-433, 2009. 

  22. Anna SL, Bontoux N and Stone HA, "Formation of dispersions using "flow focusing" in microchannels," Appl Phys Lett, vol. 82, no. 3, 364-366, 2003. 

  23. Lee W, Walker LM and Anna SL, "Role of Geometry and Fluid Properties in Droplet and Thread Formation Processes in Planar Flow Focusing," Phys Fluids, vol. 21, no. 3, 032103-1-032103-14, 2009. 

  24. Nie Z, Seo M, Xu S, Lewis PC, Mok M; Kumacheva E, Garstecki P, Whitesides GM and Stone HA, "Emulsification in a Microfluidic Flow-focusing Device: Effect of the Viscosities of the Liquids," Microfluid Nanofluidics, vol. 5, pp. 585-594, 2008. 

  25. Garstecki P, Stone HA and Whitesides GM, "Mechanism for flowrate controlled breakup in confined geometries: a route to monodisperse emulsions," Phys Rev Lett, vol. 94, no. 16 pp. 164501-1-164501-4, 2005. 

  26. Lorber N, Sarrazin, F, Guillot, P, Panizza P, Colin A, Pavageau B, Hany C, Maestro P, Marre S, Delclos T, Aymonier C, Subra P, Prat L, Gourdon C and Mignard E, "Some recent advances in the design and the use of miniaturized dropletbased continuous process: Applications in chemistry and high-pressure microflows," Lab Chip, vol. 11, no. 5, pp. 779- 787, 2011. 

  27. Song H, Chen DL and Ismagilov RF, "Reactions in droplets in microfluidic channels," Angew Chem Int Ed, vol. 45, no. 44, pp. 7336-7356, 2006. 

  28. Tice JD, Song H, Lyon AD and Ismagilov RF, "Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers," Langmuir, vol. 19, no. 22, pp.9127-9133, 2003. 

  29. Muradoglu M and Stone HA, "Mixing in a drop moving through a serpentine channel: A computational study," Phys Fluids, Vol. 17, no. 7, pp. 073305-1-073305-9, 2005. 

  30. Christopher GF and Anna SL, "Microfluidic methods for generating continuous droplet streams," J Phys D: Appl Phys, vol. 40, pp. R319-R336, 2007. 

  31. Nunes JK, Tsai SSH, Wan J and Stone HA, "Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis," J Phys D: Appl Phys, vol. 46, pp. 114002-1-114003-20, 2013. 

  32. Bernhard HW, Ron LB and Catherine RC, "Labon-a-chip for drug development," Adv Drug Deliver Rev, vol. 55, no 3, pp. 349-377, 2003. 

  33. Anna SL and Mayer HC, "Microscale tipstreaming in a microfluidic flow focusing device," Phys Fluids, vol. 18, no. 2, pp. 121512-1-121512-14, 2006. 

  34. Olsson E and Kreiss G, "A conservative level set method for two phase flow," J Comput Phys, vol. 210, pp. 225-246, 2005. 

  35. Xu JH, Luo GS, Li SW and Chen GG, "Shear force induced monodisperse droplet formation in a microouidic device by controlling wetting properties," Lab Chip, vol. 6, pp. 131- 136, 2006. 

  36. Xu JH, Li SW, Tan J, Wang YJ and Luo GS, "Preparation of highly monodisperse droplet in a T-junction microfluidic device," AIChE J, vol. 52, no. 9, pp. 3005-3010, 2006. 

  37. Tan J, Xu JH, Li SW, Luo GS, "Drop dispenser in a crossjunction microfluidic device: scaling and mechanism of breakup," Chem Eng J, vol. 136, pp. 306-311, 2008. 

  38. Xu JH, Li SW, Tan J and Luo GS, "Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping," Microfluid Nanofluidics, vol. 5, no. 6, 711-717, 2008. 

  39. Watanabe Y, Saruwatari A and Ingram DM, "Free-surface flows under impacting droplets," J Comp Phys, vol. 227, 2344-2365, 2008. 

  40. Sussman M, Smereka P and Osher S, "A level set approach for computing solutions to incompressible tow-phase flows," J Comput Phys, vol. 114, no. 1, 146-159, 1994. 

  41. Chang YCC, Hou TYY, Merriman B and Osher S, "A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows," J Comput Phys, vol. 124, 449- 464, 1996. 

  42. Fedkiw RP, Aslam T, Merriman B and Osher S, "A nonoscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)," J Comput Phys, vol. 152, no. 2, 457-492, 1999. 

  43. Kang M, Fedkiw RP and Liu XD, "A Boundary Condition Capturing Method for Multiphase Incompressible Flow," J Sci Comput, vol. 15, 323-360, 2000. 

  44. Sussman M and Puckett EG, "A Coupled Level Set and Volume- of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows," J Comput Phys, 162, no. 2, 301-337, 2000. 

  45. Xu JH, Li SW, Tan J, Wang YJ and Luo GS, "Preparation of highly monodisperse droplet in a T-junction microfluidic device," AIChE J, vol. 52, no. 9, pp. 3005-3010, 2006. 

  46. Seemann R, Brinkmann M, Pfohl T and Herminghaus S, "Droplet based microfluidics," Rep Prog Phys, vol. 75, no. 1, 016601, 2012. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로