$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model 원문보기

Journal of electrical engineering & technology, v.10 no.4, 2015년, pp.1804 - 1814  

Liu, Kang-Lin (state Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University) ,  Liao, Rui-Jin (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University) ,  Zhao, Xue-Tong (State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University)

Abstract AI-Helper 아이콘AI-Helper

In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • This paper presents a new plasma hybrid model for the simulation of DC negative corona discharge under atmospheric air. Using the proposed novel simulation model, this work aims at discussing some microcosmic characteristics such as electron mean energy distribution, electron density distribution, generation and dissipation performances of electrons along the axis during a pulse cycle in order to understand the main physical mechanisms.
본문요약 정보가 도움이 되었나요?

참고문헌 (45)

  1. H. Yin, J.L. He, B. Zhang, “Finite volume-based approach for the hybrid ion-flow field of UHVAC and UHVDC transmission lines in parallel”, IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2809-2820, September 2005. 

  2. L. Chen, X. Bian, L. Wang, “Effect of rain drops on corona discharge in alternating current transmission lines with a corona cage”, Japanese Journal of Applied Physics, vol. 51, no. 9S2, pp. 09MG02, September 2012. 

  3. X.B. Bian, L.C. Chen, D. Yu, “Impact of surface roughness on corona discharge for 30-year operating conductors in 500-kV ac power transmission line”,IEEE Transactions on Power Delivery, vol. 27, no. 3, pp. 1693-1695, July 2012. 

  4. Y. Kim, K. Shong, “The characteristics of UV strength according to corona discharge from polymer insulators using a UV sensor and optic lens”, IEEE Transactions on Power Delivery, vol. 26, no. 3, pp. 1579-1584, July 2011. 

  5. G. Horvath, M. Zahoran, N. J. Mason, “Methane decomposition leading to deposit formation in a DC positive CH4-N2 corona discharge”, Plasma Chemistry and Plasma Processing, vol. 31, no. 2, pp. 327-335, April 2011. 

  6. C. Labay, C. Canal, M.J. García-Celma, “Influence of corona plasma treatment on polypropylene and polyamide 6.6 on the release of a Model Drug”, Plasma Chemistry and Plasma Processing, vol. 30, no. 6, pp. 327-335, December 2010. 

  7. M. Redolfi, N. Aggadi, X. Duten, “Oxidation of acetylene in atmospheric pressure pulsed corona discharge cell working in the nanosecond regime”, Plasma Chemistry and Plasma Processing, vol. 29, no. 3, pp. 173-195, June 2009. 

  8. B. M. Penetrante, J. N. Bardsley, M. C. Hsiao, “Kinetic analysis of non-thermal plasmas used for pollution control”, Japanese journal of applied physics, vol. 36, no. 7S, pp. 5007, July 1997. 

  9. S. Masuda, H. Nakao, “Control of NOx by positive and negative pulsed corona discharges”, IEEE Transactions on Industry Applications, vol. 26, no. 2, pp. 374-383, April 1990. 

  10. W. Peukert, C. Wadenpohl, “Industrial separation of ine particles with difficult dust properties”, Powder Technology, vol. 118, no. 1, pp. 136-148, August 2001. 

  11. C. Lanzerstorfer, “Solid/Liquid-Gas Separation with Wet Scrubbers and Wet Electrostatic Precipitators: A Review”, Filtration and Separation, vol. 37, no. 5, pp. 30-34, June 2000. 

  12. G. Deli, Y. Xuechang, Z. Fei, et al, “Experimental study on indoor air cleaning technique of nano-titania catalysis under plasma discharge”, Plasma Science and Technology, vol. 10, no. 2, pp. 216, April 2008. 

  13. I. Fofana, A. Beroual, “A model for long air gap discharge using an equivalent electrical network”, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 3, no. 2, pp. 273-282, April 1996. 

  14. S. Nijdam, K. Miermans, E. M. van Veldhuizen, “A peculiar streamer morphology created by a complex voltage pulse”, IEEE Transactions on Plasma Science, vol. 39, no. 11, pp. 2216-2217, November 2011. 

  15. K. Sekimoto, M. Takayama, “Influence of needle voltage on the formation of negative core ions using atmospheric pressure corona discharge in air”, International Journal of Mass Spectrometry, vol. 261, no. 1, pp. 38-44, March 2007. 

  16. T. J. Sommerer, M. J. Kushner, “Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N 2 , O 2 , He/N 2 / O 2 , He/CF 4 /O 2 , and SiH4/NH3 using a Monte Carlo­fluid hybrid model”, Journal of applied physics, vol. 761, no. 4, pp. 1654-1673, March 1992. 

  17. J. Nahomy, C. M. Ferreira, B. Gordiets, “Experimental and theoretical investigation of a N 2 -O 2 DC flowing glow discharge”, Journal of Physics D: Applied Physics, vol. 28, no. 4, pp. 738, April 1995. 

  18. S. Pancheshnyi, M. Nudnova, A. Starikovskii, “Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation”, Physical Review E, vol. 71, no. 1, pp. 016407, January 2005. 

  19. X. H. Liu, W. He, F. Yang, “ Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure”, Chinese Physics B , vol. 21, no. 7, pp. 075201, July 2012. 

  20. W. He, X. H. Liu, F. Yang, “Numerical simulation of direct current glow discharge in air with experimental validation”, Japanese Journal of Applied Physics, vol. 51, no. 2R, pp. 026001, February 2012. 

  21. D. S. Antao, D. A. Staack, A. Fridman, “Atmospheric pressure dc corona discharges: operating regimes and potential applications”, Plasma Sources Science and Technology, vol. 18, no. 3, pp. 035016, August 2009. 

  22. F. F. Wu, R. J. Liao, K. Wang, “Numerical Simulation of the Characteristics of Heavy Particles in Bar-Plate DC Positive Corona Discharge Based on a Hybrid Model”, IEEE Transactions on Plasma Science, vol. 42, no. 3, pp. 868-878, March 2014. 

  23. G. E. Georghiou, A. P. Papadakis, R. Morrow, “Numerical modelling of atmospheric pressure gas discharges leading to plasma production”, Journal of Physics D: Applied Physics, vol. 38, no. 20, pp. R303, October 2005. 

  24. C. Li, U. Ebert, W. Hundsdorfer, “Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. Planar fronts”, Journal of Computational Physics, vol. 229, no. 1, pp. 200-220, January 2010. 

  25. T. N. Tran, I. O. Golosnoy, P. L. Lewin, “Numerical modelling of negative discharges in air with experimental validation”, Journal of Physics D: Applied Physics, vol. 44, no. 1, pp. 015203, January 2011. 

  26. B. F. Gordiets, C. M. Ferreira, V. L. Guerra V L, “Kinetic model of a low-pressure N 2 -O 2 flowing glow discharge”, IEEE Transactions on Plasma Science, vol. 23, no. 4, pp. 750-768, August 1995. 

  27. S. Mahadevan, L. L. Raja, “Simulations of directcurrent air glow discharge at pressures~1 Torr: Discharge model validation”, Journal of Applied Physics, vol. 107, no. 9, pp. 093304, May 2010. 

  28. A. A. Kulikovsky, “The role of photoionization in positive streamer dynamics”, Journal of Physics D: Applied Physics, vol. 33, no. 12, pp. 1514, June 2000. 

  29. N. Liu, V. P. Pasko, “Effects of photoionization on similarity properties of streamers at various pressures in air”, Journal of Physics D: Applied Physics, vol. 39, no. 2, pp. 327, January 2006. 

  30. S. Nijdam, F. Van De Wetering, R. Blanc, “Probing photo-ionization: experiments on positive streamers in pure gases and mixtures”, Journal of Physics D: Applied Physics, vol. 43, no. 14, pp. 14520, April 2010. 

  31. M. B. Zhelezniak, A. K. Mnatsakanian, S. V. Sizykh, “Photoionization of nitrogen and oxygen mixtures by radiation from a gas discharge”, High Temperature Science, vol. 20, no. 3, pp. 423-428, November 1982. 

  32. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, “Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures”, Plasma Sources Science and Technology, vol. 1, no. 3, pp. 207, August 1992. 

  33. P. Ségur, A. Bourdon, E. Marode, “The use of an improved Eddington approximation to facilitate the calculation of photoionization in streamer discharges”, Plasma Sources Science and Technology, vol. 15, no. 4, pp. 648, November 2006. 

  34. T. Farouk, B. Farouk, D. Staack, “Simulation of dc atmospheric pressure argon micro glow-discharge”, Plasma Sources Science and Technology, vol. 15, no. 4, pp. 676, November 2006. 

  35. G. J. M. Hagelaar, F. J. De Hoog, G. M. W. Kroesen, “Boundary conditions in fluid models of gas discharges”, Physical Review E, vol. 62, no. 1, pp. 1452, July 2000. 

  36. Y. Gosho, “Enhancement of dc positive streamer corona in a point-plane gap in air due to addition of a small amount of an electronegative gas”, Journal of Physics D: Applied Physics, vol. 14, no. 11, pp. 2035, November 1981. 

  37. J. Y. Won, P. F. Williams, “Experimental study of streamers in pure N 2 and N 2 /O 2 mixtures and a ≈ 13cm gap”, Journal of Physics D: Applied Physics, vol. 35, no. 3, pp. 205, February 2002. 

  38. W. X. Sima, Q. J. P, Q. Yang, “Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen - nitrogen mixtures”, Chinese Physics B, vol. 22, no. 1, pp. 015203, January 2013. 

  39. R. Zentner, “Rise Time of Negative Corona Pulses”, Zeitschrift Fur Angewandte Physik, vol. 29, no. 5, pp. 294-&, January 1970. 

  40. C. Soria-Hoyo, F. Pontiga, A. Castellanos, “Particle-in-cell simulation of Trichel pulses in pure oxygen”, Journal of Physics D: Applied Physics, vol. 40, no. 15, pp. 4552, August 2007. 

  41. R. J. Liao, F. F. Wu, L.J. Yang, “Investigation on Microcosmic Characteristics of Trichel Pulse in Bar-Plate DC Negative Corona Discharge Based on a Novel Simulation Model”, International Review of Electrical Engineering, vol. 8, no. 1, 2013. 

  42. W.X. Sima, Q.J. Peng, Q. Yang, “Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen - nitrogen mixtures”, Chinese Physics B, vol. 22, no. 1, pp. 015203, January 2013. 

  43. J. D. Bourke, C. T. Chantler, “Electron energy losss pectra and overestimation of inelastic mean free paths in many-pole models”, The Journal of Physical Chemistry A, vol. 116, no. 12, pp. 3202-3205, March 2012. 

  44. J. Chen, J. H. Davidson, “Ozone production in the positive DC corona discharge: Model and comparison to experiments”, Plasma chemistry and plasma processing, vol. 22, no. 4, pp. 495-522, December 2002. 

  45. D. Staack, B. Farouk, A. Gutsol, “Characterization of a dc atmospheric pressure normal glow discharge”, Plasma Sources Science and Technology, vol. 14, no. 4, pp. 700, November 2005. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로