$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] AGS 인체위암세포에서 건칠, 유근피 및 신석 추출물의 항암 활성 비교 연구
Anti-cancer Potentials of Rhus verniciflua Stokes, Ulmus davidiana var. japonica Nakai and Arsenium Sublimatum in Human Gastric Cancer AGS Cells 원문보기

생명과학회지 = Journal of life science, v.25 no.8 = no.184, 2015년, pp.849 - 860  

백일성 (천보당한의원) ,  임령해 (천보당한의원) ,  박철 (동의대학교 분자생물학과) ,  최영현 (동의대학교 한의학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 한약재로 널리 사용되는 건칠, 유근피 및 신석 추출물의 항암 활성을 조사하였다. 생쥐 유래 정상세포(RAW 264.7 대식세포C2C12 근아세포)에서는 건칠, 유근피 및 신석 단독 및 복합 처리에 의하여 유의적인 세포생존율의 억제 현상은 관찰 할 수 없었다. 그리고 건칠, 유근피 및 신석의 복합 처리는 단독 처리군에 비하여 AGS 위암세포의 생존력을 유의적으로 억제하였으나, 폐암(A549), 대장암(HCT116), 간암(Hep3B) 및 방광암(T24) 세포에서는 그 효과가 미비하였다. 아울러 이러한 AGS 위암세포 선택적 생존 억제력은 apoptosis 유도와 밀접한 연관성이 있음을 염색질의 응축 현상, DNA 단편화 및 annexin-V 염색에 의한 flow cytometry 분석을 통하여 확인하였다. 건칠, 유근피 및 신석의 복합 처리는 Fas 및 Fas legand의 발현을 증가시켰으며, XIAP, cIAP-1 및 survivin과 같은 IAP family 단백질과 anti-apoptotic Bcl-xL의 발현은 저하시켰다. 복합 처리는 또한 mitochondrial membrane potential의 손실과 caspases (-3, -8 및 -9)의 활성에 PARP 단백질의 분절화를 유도하였다. 그러나 이러한 복합 처리에 의한 AGS 세포에서 관찰된 세포독성 및 apoptosis 유도 효과는 pan-caspases inhibitor인 z-VAD-fmk의 선처리에 의하여 차단되었다. 이상의 결과는 건칠, 유근피 및 신석의 복합 처리에 의한 AGS 위암세포 선택적 apoptosis 유도가 caspase 의존적으로 일어나고 있음을 보여주는 결과이며, in vivo 모델을 이용한 후속 연구가 진행되어야 할 것이다.

Abstract AI-Helper 아이콘AI-Helper

The anti-cancer activities of Rhus verniciflua Stokes (GC), Ulmus davidiana var. japonica Nakai (UGP) and arsenium sublimatum (SS) extracts, which have been used Oriental medicine therapy for various diseases, were investigated. The treatment of GC, UGP and SS alone, and combined treatment with GC, ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 비록 오랜 기간 동안 전통의학에서 암의 예방과 치료를 위한 다양한 약물들이 사용되어 왔으나, 이에 대한 과학적 근거가 미흡한 실정이다. 본 연구에서는 다양한 한약제를 이용한 항암 후보군을 발굴하고 이들의 조합에 의한 항암활성 증대 가능성을 지닌 새로운 처방전을 제시하고자 한다. 이를 위하여 그 동안 단일 약재로서 항암 효능이 확인된 건칠(乾漆), 유근피(楡根皮) 및 신석(信石)의 항암 활성을 비교하고, 이들의 조합을 통하여 항암활성을 극대화시킬 수 있는 비율을 선정하고자 한다.
  • 본 연구에서는 다양한 한약제를 이용한 항암 후보군을 발굴하고 이들의 조합에 의한 항암활성 증대 가능성을 지닌 새로운 처방전을 제시하고자 한다. 이를 위하여 그 동안 단일 약재로서 항암 효능이 확인된 건칠(乾漆), 유근피(楡根皮) 및 신석(信石)의 항암 활성을 비교하고, 이들의 조합을 통하여 항암활성을 극대화시킬 수 있는 비율을 선정하고자 한다. 즉 건칠, 유근피 및 신석 추출물의 단독 및 복합처리가 다양한 정상 및 암세포의 증식에 미치는 영향을 조사하였고, 이들 중 증식억제 효과가 가장 뛰어난 시료가 apoptosis 유발에 어떠한 영향을 미치는 지를 유전자 수준에서 조사한 결과 몇 가지 중요한 유전자들의 발현 변화에 대한 유의적인 결과를 얻었기에 이를 보고하는 바이다.
  • 이를 위하여 그 동안 단일 약재로서 항암 효능이 확인된 건칠(乾漆), 유근피(楡根皮) 및 신석(信石)의 항암 활성을 비교하고, 이들의 조합을 통하여 항암활성을 극대화시킬 수 있는 비율을 선정하고자 한다. 즉 건칠, 유근피 및 신석 추출물의 단독 및 복합처리가 다양한 정상 및 암세포의 증식에 미치는 영향을 조사하였고, 이들 중 증식억제 효과가 가장 뛰어난 시료가 apoptosis 유발에 어떠한 영향을 미치는 지를 유전자 수준에서 조사한 결과 몇 가지 중요한 유전자들의 발현 변화에 대한 유의적인 결과를 얻었기에 이를 보고하는 바이다.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Ahn, J., Lee, J. S. and Yang, K. M. 2014. Ultrafine particles of Ulmus davidiana var. japonica induce apoptosis of gastric cancer cells via activation of caspase and endoplasmic reticulum stress. Arch. Pharm. Res. 37, 783-792. 

  2. Chen, S. Y., Li, X. M. and Liu, S. X. 2000. A review of the research on malignant hemopathies treated with arsenium-containing Chinese drugs. Zhongguo Zhong Yao Za Zhi 25, 454-457. 

  3. Deveraux, Q. L. and Reed, J. C. 1999. IAP family proteins-suppressors of apoptosis. Genes Dev. 13, 239-252. 

  4. Devi, G. R. 2004. XIAP as target for therapeutic apoptosis in prostate cancer. Drug News Perspect. 17, 127-134. 

  5. Earnshaw, W. C., Martins, L. M. and Kaufmann, S. H. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424. 

  6. Grzybowska-Izydorczyk, O. and Smolewski, P. 2008. The role of the inhibitor of apoptosis protein (IAP) family in hematological malignancies. Postepy Hig. Med. Dosw. 62, 55-63. 

  7. Guidry, J. J., Greisinger, A., Aday, L. A., Winn, R. J., Vernon, S. and Throckmorton, T. A. 1996. Barriers to cancer treatment: a review of published research. Oncol. Nurs. Forum. 23, 1393-1398. 

  8. Han, M. H., Lee, W. S., Lu, J. N., Yun, J. W., Kim, G., Jung, J. M., Kim, G. Y., Lee, S. J., Kim, W. J. and Choi, Y. H. 2012. Tetraarsenic hexoxide induces Beclin-1-induced autophagic cell death as well as caspase-dependent apoptosis in U937 human leukemic cells. Evid. Based Complement. Alternat. Med. 2012, 201414. 

  9. Han, S. I., Kim, Y. S. and Kim, T. H. 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10. 

  10. Hébert-Croteau, N., Freeman, C. R., Latreille, J. and Brisson, J. 2002. Delay in adjuvant radiation treatment and outcomes of breast cancer-a review. Breast Cancer Res. Treat. 74, 77-94. 

  11. Hotchkiss, R. S. and Nicholson, D. W. 2006. Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol. 6, 813-822. 

  12. Huerta, S., Goulet, E. J. and Livingston, E. H. 2006. Colon cancer and apoptosis. Am. J. Surg. 191, 517-526. 

  13. Jin, U. H., Lee, D. Y., Kim, D. S., Lee, I. S. and Kim, C. H. 2006. Induction of mitochondria-mediated apoptosis by methanol fraction of Ulmus davidiana Planch (Ulmaceae) in U87 glioblastoma cells. Environ. Toxicol. Pharmacol. 22, 136-141. 

  14. Jin, Z. and El-Deiry, W. S. 2005. Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139-163. 

  15. Jung, H. J., Jeon, H. J., Lim, E. J., Ahn, E. K., Song, Y. S., Lee, S., Shin, K. H., Lim, C. J. and Park, E. H. 2007. Anti-angiogenic activity of the methanol extract and its fractions of Ulmus davidiana var. japonica. J. Ethnopharmacol. 112, 406-409. 

  16. Jung, C. H., Jun, C. Y., Lee, S., Park, C. H., Cho, K. and Ko, S. G. 2006. Rhus verniciflua stokes extract: radical scavenging activities and protective effects on H 2 O 2 -induced cytotoxicity in macrophage RAW 264.7 cell lines. Biol. Pharm. Bull. 29, 1603-1607. 

  17. Kim, J. P., Kim, W. G., Koshino, H., Jung, J. and Yoo, I. D. 1996. Sesquiterpene O-naphthoquinones from the root bark of Ulmus davidiana. Phytochemistry 43, 425-430. 

  18. Kimberley, F. C. and Screaton, G. R. 2004. Following a TRAIL: update on a ligand and its five receptors. Cell Res. 14, 359-372. 

  19. Kitt, D. D. and Lim, K. T. 2001. Antitumorigenic and cytotoxic properties of an ethanol extract derived from Rhus verniciflua Stokes (RVS). J. Toxicol. Environ. Health A 64, 357-371. 

  20. Ko, J. H., Lee, S. J. and Lim, K. T. 2005. 116 kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN) inhibits glucose/glucose oxidase (G/GO)-induced apoptosis in BNL CL.2 cells. J. Ethnopharmacol. 100, 339-346. 

  21. Lee, J. C., Lee, K. Y., Son, Y. O., Choi, K. C., Kim, J., Truong, T. T. and Jang, Y. S. 2005. Plant-originated glycoprotein, G-120, inhibits the growth of MCF-7 cells and induces their apoptosis. Food Chem. Toxicol. 43, 961-968. 

  22. Lee, J. H., Kim, M., Chang, K. H., Hong, C. Y., Na, C. S., Dong, M. S., Lee, D. and Lee, M. Y. 2015. Antiplatelet effects of Rhus verniciflua stokes heartwood and its active constituents-fisetin, butein, and sulfuretin-in rats. J. Med. Food 18, 21-30. 

  23. Lee, U. D., Suh, S. J., Kim, K. S., Kim, D. S., Jin, U. H., Lee, I. S., Yoon, U. H. and Kim, C. H. 2007. Immunomodulatory activity of Ulmus davidiana Planch (Ulmaceae) water and ethanolic extracts on bone cells: Stimulation of proliferation, alkaline phosphatase activity and type I collagen synthesis. Environ. Toxicol. Pharmacol. 23, 154-161. 

  24. Lee, J. C., Kim, J., Lim, K. T., Yang, M. S. and Jang, Y. S. 2001. Ethanol-eluted extract of Rhus verniciflua Stokes showed both antioxidant and cytotoxic effects on mouse thymocytes depending on the dose and time of the treatment. J. Biochem. Mol. Biol. 34, 250-258. 

  25. Martinou, J. C. and Youle, R. J. 2011. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92-101. 

  26. Mita, A. C., Mita, M. M., Nawrocki, S. T. and Giles, F, J. 2008. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res. 14, 5000-5005. 

  27. Niu, C., Yan, H., Yu, T., Sun, H. P., Liu, J. X., Li, X. S., Wu, W., Zhang, F. Q., Chen, Y., Zhou, L., Li, J. M., Zeng, X. Y., Yang, R. R., Yuan, M. M., Ren, M. Y., Gu, F. Y., Cao, Q., Gu, B. W., Su, X. Y., Chen, G. Q., Xiong, S. M., Zhang, T. D., Waxman, S., Wang, Z. Y., Chen, Z., Hu, J., Shen, Z. X. and Chen, S. J. 1999. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood 94, 3315-3324. 

  28. Okada, H. and Mak, T. W. 2004. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4, 592-603. 

  29. Ola, M. S., Nawaz, M. and Ahsan, H. 2011. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol. Cell Biochem. 351, 41-58. 

  30. Peták, I. and Houghton, J. A. 2001. Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol. Oncol. Res. 7, 95-106. 

  31. Roy, M. J., Vom, A., Czabotar, P. E. and Lessene, G. 2014. Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway. Br. J. Pharmacol. 171, 1973-1987. 

  32. Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S. and Reed, J. C. 1997. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914-6925. 

  33. Shen, Z. X., Chen, G. Q., Ni, J. H., Li, X. S., Xiong, S. M., Qiu, Q. Y., Zhu, J., Tang, W., Sun, G. L., Yang, K. Q., Chen, Y., Zhou, L., Fang, Z. W., Wang, Y. T., Ma, J., Zhang, P., Zhang, T. D., Chen, S. J., Chen, Z. and Wang, Z. Y. 1997. Use of arsenic trioxide (As 2 O 3 ) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokineticsin relapsed patients. Blood 89, 3354-3360. 

  34. Song, I. K., Kim, K. S., Suh, S. J., Kim, M. S., Kwon, D. Y., Kim, S. L. and Kim, C. H. 2007. Anti-inflammatory effect of Ulmus davidiana Planch (Ulmaceae) on collagen-induced inflammation in rats. Environ. Toxicol. Pharmacol. 23, 102-110. 

  35. Soriano, M. E. and Scorrano, L. 2010. The interplay between BCL-2 family proteins and mitochondrial morphology in the regulation of apoptosis. Adv. Exp. Med. Biol. 687, 97-114. 

  36. van Delft, M. F. and Huang, D. C. 2006. How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res. 16, 203-213. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로