$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 겨울철 규조류 대발생 제어를 위한 Naphthoquinone 유도체 Nq 4-6의 적용 가능성
Application Possibility of Naphthoquinone Derivative Nq 4-6 for Mitigation of Winter Diatom Bloom 원문보기

Ecology and resilient infrastructure, v.2 no.3, 2015년, pp.224 - 236  

변정환 (한양대학교 환경과학과) ,  주재형 (한양대학교 생명과학과) ,  김백호 (한양대학교 생명과학과) ,  한명수 (한양대학교 환경과학과)

초록
AI-Helper 아이콘AI-Helper

겨울철 한강과 낙동강에서 규조 Stephanodiscus hantzschii에 의한 조류발생이 빈번하게 일어나며, 이로 인한 수자원의 질적변화와 정수과정에 많은 경제적 손실을 주고 있다. 본 연구진은 조류대발생의 원인종인 S. hantzschii을 제어할 수 있는 naphthoquinone (Nq) 화합물을 개발하였다. 본 연구는 개발된 Nq 화합물 중 가장 친환경적인 화합물을 선정하기 위한 실험으로 물질의 살조범위 실험과 낙동강 현장수를 이용한 10 L 규모의 미소생태 실험을 수행하였다. 그 결과 Nq 4-6 화합물의 살조범위는 원반형 규조류에 특이적으로 나타났으며, 남조류 및 녹조류에 대해 살조 활성이 나타나지 않았다. 미소생태 실험 결과, 대조구에서 S. hantzschii가 지속적으로 세포밀도가 증가한 반면, Nq 4-6 화합물을 접종한 처리구에서는 처리 7일째 대조구 대비 S. hantzschii가 94.4% 감소하였으며, S. hantzschii를 제외한 나머지 규조류 및 녹조류에서는 Nq 4-6 화합물 처리 후 살조활성이 관찰되지 않았다. 식물플랑크톤 군집 분석 결과 대조구에 비해 처리구에서 우점도는 낮게 나타났으며, 다양도, 풍부도, 균등도 등은 처리구에서 높게 나타났다. 물리화학적요인 (용존산소, pH, 영양염) 및 미소생물 (heterotrophic nanoflagellates, 섬모충, 박테리아) 등에서도 Nq 4-6 화합물 처리 후 특이적인 변화는 나타나지 않았다. 따라서 본 연구에서 개발된 Nq 4-6 화합물은 생태독성이 낮고, 겨울철 국내 하천에서 매년 대발생을 일으키는 규조 S. hantzschii만을 특이적으로 제어함을 확인하였으며, 적용 시 식물플랑크톤 종 다양성을 증진시키는 친환경적인 조류제어제로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

We conducted the algicidal activity screening tests using 10 L microcosm to investigate the possibility of the field application of naphthoquinone derivative Nq 4-6 compound as an algicide. We determined its application range to assess its algicidal effects on the phytoplankton and to evaluate the r...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 남조 Aphanizomenon flos-aquae (HYL1112-AP1), Dolichospermum circinale (HYCC201307-AN13), Microcystis aeruginosa (HYK0906-A2), Nostoc paludosum (KMMCC-1184) Oscillatoria sp. (HYHC1409-OS01) 녹조 Scenedesmus quadricauda (AG10003), Cosmarium bioculatum (CCAP 612/17) 및 규조 Aulacoseira granulata (HYND1404AGZ2), Cyclotella meneghiniana (HY ND1404CMZ3), Fragilaria acus (HYND1404SAZ1), Stephanodiscus hantzschii (HYHC1405-SH01)를 각각 5 x 103 cell mL-1 밀도로 48 well plate (1 mL)에서 실험을 수행하였다. 살조 활성은 Nq 4-6 화합물을 접종 후 7일째 계수한 결과를 바탕으로 다음과 같은 식으로 계산하였다.
  • Naphthoquinone Nq 4-6 화합물이 Stephanodiscus hantzschii를 포함한 다양한 조류에 미치는 영향을 평가하기 위하여 남조류 5종, 녹조류 2종, 규조류 4종에 접종 후 7일째까지 50 %의 살조 활성을 나타내는 EC50 값을 도출하였다 (Fig. 1, Table 2). Nq 4-6화합물 접종 7일째 남조 A.
  • Naphthoquinone Nq 4-6 화합물이 규조 Stephanodiscus hantzschii를 포함한 다른 조류에 어떤 영향을 미치는지 평가하기 위해 남조류, 녹조류 및 규조류에 Nq 4-6 화합물을 최종농도 0.5, 1, 5 및 10 μM로 접종하여 살조 활성을 관찰하였다.
  • Nq 4-6 화합물에 대한 미소생태 실험은 선행연구를 통해 효과가 입증된 농도인 0.5 μM을 최종농도로 접종하여 15일간 진행되었으며, 각각의 실험구는 S. hantzschii가 침전되는 것을 방지하기 위해 수중펌프를 이용해 물을 혼합시켜 주었다.
  • Nq 4-6 화합물에 의한 식물플랑크톤 군집의 변화를 알아보기 위해 우점도 지수 (dominance index), 다양도 지수 (diversity index), 풍부도 지수 (richness index), 균등도 지수 (evenness index) 등을 Nq 4-6화합물을 적용하지 않은 대조구와 Nq 4-6 화합물을 적용한 처리구에서 각각 산출하였다.
  • Nq 4-6 화합물의 현장적용 가능성을 평가하기 위해 규조 Stephanodiscus hantzschii 가 우점하는 낙동강 현장수를 이용한 10 L 규모의 미소생태 실험을 수행하여 물리화학적 요인 및 생물학적 요인에 대해 분석하였다. 미소생태 실험의 물리화학적 요인을 분석한 결과 수온, pH, 전기전도도, 생화학적 산소요구량 (BOD5)은 대조구와 Nq 4-6 처리구에서 실험 종료 시까지 유사한 경향성을 보였다 (Fig.
  • Nq 4-6 화합물의 현장적용 가능성을 평가하기 위해 매년 규조 S. hantzschii에 의해 조류 대발생에 의해 피해가 심각한 낙동강 현장수를 채수하여 미소생태 실험을 수행하였다. 미소생태 실험은 2014년 2월 낙동강 삼랑진 (35º 22′ 28˝ N, 128º 38′ 23˝ E)에서 채수하여 냉암소 상태로 실험실로 운반 후 수행하였다.
  • 따라서 본 연구에서는 S. hantzschii에 대해 높은 살조 활성을 나타냈던 Nq 4-6 화합물의 살조 범위에 대해 실험을 진행하였다. 또한, Nq 4-6 화합물의 적용 가능성을 평가하기 위해 현장수를 이용한 미소생태 실험으로 Nq 4-6 화합물 적용 후 물리화학적 및 생물학적 요인 변화를 관찰하였다.
  • hantzschii에 대해 높은 살조 활성을 나타냈던 Nq 4-6 화합물의 살조 범위에 대해 실험을 진행하였다. 또한, Nq 4-6 화합물의 적용 가능성을 평가하기 위해 현장수를 이용한 미소생태 실험으로 Nq 4-6 화합물 적용 후 물리화학적 및 생물학적 요인 변화를 관찰하였다.
  • 물리화학적 요인 중 수온, pH, 전기전도도, 탁도는 portable multiparameter (HORIBA U50, Japan)로 직접 측정하였고 용존산소 (DO), 생화학적 산소요구량 (BOD5), 영양염 항목은 채수 후 측정하였다 (APHA 2005). 용존산소는 Winkler 법에 따라 측정하였으며, 생화학적 산소요구량도 Winkler 법에 따라 측정하였다.
  • 본 연구진은 보다 친환경적인 조류 제어 기법을 개발하고자 자연계에 존재하는 물질을 대상으로 탐색 하였고, 그 결과 Naphthoquinone (이하 Nq)을 기반으로 한 생물유래 합성물질을 개발하였다 (Joo 2012). Nq 유도체는 다양한 식물과 미생물에서 생산되는 물질로 항암제, 항증식제, 항혈소판제, 항염증제, 항알레르기제 등의 기능뿐만 아니라, 다양한 세균, 곰팡이 등에도 효과적인 제어효과를 나타내는 물질로 의약품에 많이 쓰인다 (O’Brien 1991, Monks et al.
  • 식물플랑크톤 변화는 선정된 Nq 4-6의 처리 당일을 0일로, 처리 후 2, 4, 7, 10, 15 일째 마다 50 mL를 분취하여 Lugol 용액으로 고정한 뒤 세포를 계수하였다. 식물플랑크톤의 동정은 광학 현미경 (Olympus IX71, Japan)의 x 200~400배율에서 Sedgwick-Rafter Chamber (PhytoTech Inc.
  • 식물플랑크톤 변화는 선정된 Nq 4-6의 처리 당일을 0일로, 처리 후 2, 4, 7, 10, 15 일째 마다 50 mL를 분취하여 Lugol 용액으로 고정한 뒤 세포를 계수하였다. 식물플랑크톤의 동정은 광학 현미경 (Olympus IX71, Japan)의 x 200~400배율에서 Sedgwick-Rafter Chamber (PhytoTech Inc., USA)를 이용하여 종 수준까지 동정하였고, 동일 속에서 뚜렷한 식별 형질의 차이를 보이지 않는 종은 미동정종 (sp.)으로 처리하였다. 세균 및 heterotrophic nanoflagellates (HNFs)의 경우, 각각 2 mL, 10 mL을 분취하여 DAPI (4’,6’- diamidino-2-phenylindole) 법으로 5분간 염색한 후, 0.
  • 채수한 현장수는 S. hantzschii가 8 x 103 cells mL-1 밀도로 우점하였으며, 실험은 10℃, 광도 30-40μmol m-2 s-1, 12 : 12 cycle (dark : light)의 조건에서 10 L 규모로 진행하였다.

대상 데이터

  • 본 연구에 사용된 식물플랑크톤은 총 12종으로 남조 Aphanizomenon flos-aquae (HYL1112-AP1), Dolichospermum circinale (HYCC201307-AN13), Microcystis aeruginosa (HYK0906-A2), Oscillatoria sp. (HYHC1409-OS01) 4종, 규조 Aulacoseira granulata (HYND1404AGZ2), Cyclotella meneghiniana (HYND1404CMZ3), Fragilaria acus (HYND1404 SAZ1)와 Stephanodiscus hantzschii (HYHC1405- SH01) 4종은 모두 본 연구진이 북한강 및 낙동강에서 출현한 종을 직접 분리 및 배양하였다. 남조 Nostoc paludosum (KMMCC-1184), 녹조 Scenedesmus quadricauda (AG10003) 2종은 한국 생명공학연구원 (KRIBB)에서 분양받았으며, 녹조 Cosmarium bioculatum (CCAP 612/17) 1종은 영국 조류 및 원생동물 배양 센터 (CCAP, Culture Collection of Algae and Protozoa, SAMS Research Service Ltd, Scottish Marine Institute, England)에서 각각 분양받았다 (Table 1).
  • (HYHC1409-OS01) 4종, 규조 Aulacoseira granulata (HYND1404AGZ2), Cyclotella meneghiniana (HYND1404CMZ3), Fragilaria acus (HYND1404 SAZ1)와 Stephanodiscus hantzschii (HYHC1405- SH01) 4종은 모두 본 연구진이 북한강 및 낙동강에서 출현한 종을 직접 분리 및 배양하였다. 남조 Nostoc paludosum (KMMCC-1184), 녹조 Scenedesmus quadricauda (AG10003) 2종은 한국 생명공학연구원 (KRIBB)에서 분양받았으며, 녹조 Cosmarium bioculatum (CCAP 612/17) 1종은 영국 조류 및 원생동물 배양 센터 (CCAP, Culture Collection of Algae and Protozoa, SAMS Research Service Ltd, Scottish Marine Institute, England)에서 각각 분양받았다 (Table 1).
  • 미소생태 실험은 2014년 2월 낙동강 삼랑진 (35º 22′ 28˝ N, 128º 38′ 23˝ E)에서 채수하여 냉암소 상태로 실험실로 운반 후 수행하였다.
  • 2009). 합성된 물질 중 겨울철 대발생을 일으키는 규조 S. hantzschii에 가장 살조 활성이 높았던 Nq 4-6 화합물을 선별하였다. 하지만 최종 선정된 Nq 4-6화합물이 S.

이론/모형

  • )값을 도출하였다. EC50 값은 다음과 같은 식으로 Sigmaplot Software (USA)를 이용하여 측정하였다 (Kooijman 1987).
  • 균등도 지수의 경우 각 지수의 최대치에 대한 실제치의 비로써 표현된다. 각 다양도 지수는 군집내 모든 종의 개체수가 동일할 때 최대가 되므로 결국 균등도 지수는 군집내 종 구성의 균일한 정도를 나타내는 것으로 Pielou (1975)의 식을 사용하여 산출 하였다.
  • 다양도 지수의 경우 Margalef (1958)의 정보이론에 의해 유도된 Shannon-Wiever의 식 (Pielou 1969) 을 이용하여 산출하였다.
  • 세균 및 heterotrophic nanoflagellates (HNFs)의 경우, 각각 2 mL, 10 mL을 분취하여 DAPI (4’,6’- diamidino-2-phenylindole) 법으로 5분간 염색한 후, 0.2 μm-pore-size black polycarbonate filters (Millipore Inc., USA)로 포집한 후 x1000 배율의 형광 현미경 (Olympus BX51, Japan)로 발광하는 세포를 계수하였다 (Porter and Feig 1980).
  • 용존산소는 Winkler 법에 따라 측정하였으며, 생화학적 산소요구량도 Winkler 법에 따라 측정하였다. 암모니아성 질소 (NH4-N), 아질산성 질소 (NO2-N), 질산성 질소 (NO3-N), 인산염 인 (PO4-P), 총 인 (TP) 및 규산염 규산 (SiO2-Si)은 APHA (2005)을 따랐다.
  • ), 영양염 항목은 채수 후 측정하였다 (APHA 2005). 용존산소는 Winkler 법에 따라 측정하였으며, 생화학적 산소요구량도 Winkler 법에 따라 측정하였다. 암모니아성 질소 (NH4-N), 아질산성 질소 (NO2-N), 질산성 질소 (NO3-N), 인산염 인 (PO4-P), 총 인 (TP) 및 규산염 규산 (SiO2-Si)은 APHA (2005)을 따랐다.
  • 우점도 지수 (dominant index)의 경우 우점종과 아우점종을 선정하여 계산하였으며, 지수의 산출은 McNaughton의 우점도 지수에 의하여 산출하였다 (McNaughton 1967).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
무분별한 조류 제어가 발생시키는 문제점은 무엇인가? 2005, Lürling and Oosterhout2013). 이와 같은 무분별한 조류 제어는 생물 종 다양성 감소 및 먹이사슬 교란 등의 수중생태계 파괴로 야기될 수 있다. 최근 세계적으로 생물 종 다양성에 대한 중요성이 부각되고 있는 실정이며, 국내 역시 수질개선에 대한 개념이 물리화학적 수질개선에서 생태적으로 건강한 수질개선으로 변화하고 있는 추세이다 (Kim et al.
조류 제어를 위해 대상 조류에 특이적인 살조범위를 갖고 생태계에 교란이 적은 친환경적인 조류 제어 기술 개발이 필요한 이유는 무엇인가? 이와 같은 무분별한 조류 제어는 생물 종 다양성 감소 및 먹이사슬 교란 등의 수중생태계 파괴로 야기될 수 있다. 최근 세계적으로 생물 종 다양성에 대한 중요성이 부각되고 있는 실정이며, 국내 역시 수질개선에 대한 개념이 물리화학적 수질개선에서 생태적으로 건강한 수질개선으로 변화하고 있는 추세이다 (Kim et al. 2008, Hong 2014).
규조류 대발생이 일으키는 문제는 무엇인가? S. hantzschii를 포함한 규조류 대발생은 수계의 심미적 가치 하락, 이취미로 인한 식수원 확보 문제 및 수면 휴양 시설의 가치하락 등의 문제를 일으키며, 특히 정수처리시설에 문제를 일으켜 경제적 손실을 발생시킨다 (Bourne et al. 1996, Dawson 1998, Choi et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (42)

  1. APHA. 2005. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF, Washington D.C., USA. 

  2. Atkinson, R., Tuazon, E.C. and Arey, J. 1990. Reactions of naphthalene in - $N_2O_5-NO_3-NO_2$ -air mixtures. International Journal of Chemical Kinetics 22: 1071-1081. 

  3. Beakes, G.W., Canter, H.M. and Jaworski, G.H.M. 1988. Zoospore ultrastructure of Zygorhizidium affluens and Z. planktonicum, two chytrids parasitizing the diatom Asterionella formosa. Canadian Journal of Botany 66: 1054-1067. 

  4. Bourne, D.G., Jones, G.J., Blakeley, R.L., Jones A., Negri, A.P. and Riddles, P. 1996. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Applied and Environmental Microbiology 62: 4086-4094. 

  5. Byun, J.H., Kim, H.K., Mun, S.K. and Kim, B.H. 2014. Water quality improvement by natural plant-mineral composition and field temperatures of a eutrophic lake in South Korea. Journal of Environmental Biology 35: 807-813. 

  6. Cho, K.J., Shin, J.K., Kwak, S.K. and Lee, O.H. 1998. Diatom genus Stephanodiscus as eutrophication indicator for water quality assessment. Korea Journal of Environmental Biology 31: 204-210. (in Korean) 

  7. Choi, H.J., Kim, B.H., Kim, J.D. and Han, M.S. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biological Control 33: 335-343. 

  8. Choi, J.K., Lee, E.H., Noh, J.H. and Huh, S.H. 1997. The study on the phytoplankton bloom and primary productivity in Lake Shihwa and adjacent coastal areas. Journal of the Korean Society of Oceanography 2: 78-86. (in Korean) 

  9. Dawson, R.M. 1998. The toxicology of microcystins. Toxicon 36: 953-962. 

  10. Dong, Y., Chin, S.F., Blanco, E., Bey, E. A., Kabbani, W., Xie, X.J., Bornmann, W.G., Boothman, D.A. and Gao, J. 2009. Intratumoral delivery of betalapachone via polymer implants for prostate cancer therapy. Clinical Cancer Research 15: 131-139. 

  11. Froelich, P.N., Blanc, V., Mortlock, R.A., Chillrud, S.N., Dunstan, W., Udomkit, A. and Peng, T.H. 1992. River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatom, rivers, and oceans. Paleoceanography 7: 739-767. 

  12. Gumbo, R.J., Ross, G., and Cloete, E.T. 2008. Biological control of Microcystis dominated harmful algal blooms. African Journal of Biotechnology 7: 4765-4773. 

  13. Gumbo, R.J., Ross, G. and Cloete, T. 2010. The isolation and identification of predatory bacteria from a Microcystis algal bloom. African Journal of Biotechnology 9: 663-671. 

  14. Ha, K., Jang, M.H., and Joo, G.J. 2003. Winter Stephanodiscus bloom development in the Nakdong River regulated by an estuary dam and tributaries. Hydrobiologia 506-509: 221-227. 

  15. Han, M.S., Lee, H.R., Hong, S.S., Kim, Y.O., Lee, K., Choi, Y.K., Kim, S. and Yoo, K.I., 2002. Ecological studies on Togyo Reservoir system in Chulwon, Korea. V. Seasonal changes of sizefractionated standing crops and chlorophyll a of phytoplankton in Kyunan Stream of Paldang River-Reservoir systems and Togyo Reservoir, Korea. Korean Journal of Environmental Biology 20: 91-99. (in Korean) 

  16. Hong, S.K. 2014. A Convention on biological diversity, island biodiversity and strategy of Korea. Journal of Korean Island 26: 187-202. (in Korean) 

  17. Ichimura, T. 1971 Sexual cell division and conjugationpapilla formation in sexual reproduction of Closterium strigosum. In, Nishizawa, K. (ed.). Proceedings of the Seventh International Seaweed Symposium. University of Tokyo Press, Tokyo, Japan. pp. 208-214. 

  18. Jacob, V. 1960. Phytoplankton communities of western Lake Erie and the $CO_2$ and $O_2$ changes associated with them. Limnology and Oceanography 5: 372-380. 

  19. Joo, J.H. 2012. Field Assessment for Naphthoquinone Group on the Mitigation of Freshwater Diatom Stephanodiscus Bloom. Master Thesis. Hanyang University, Seoul, Korea. (in Korean) 

  20. Jung, S.W., Kim, B.H., Katano, T., Kong, D.S. and Han, M.S., 2008. Pseudomonas fluorescens HYK 0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii. Journal of Applied Microbiology 105: 186-195. 

  21. Kang, Y.H., Peng, S.W., Jo, S.H. and Han, M.S. 2011. Field assessment of the potential algicidal bacteria against diatom blooms. Biocontrol Science and Technology 21: 969-984. 

  22. Kim, B.H., Choi, J.Y., Hwang, S.J. and Han, M.S. 2004. Influences of nutrient deficiency on the phytoplankton community in Pal'tang Reservoir, Korea. Korean Journal of Limnology 37: 47-56. (in Korean) 

  23. Kim, H.M., Lee, J.H. and An, K.G. 2008. Water quality and ecosystem health assessments in urban stream ecosystem. Korean Journal of Environmental Biology 26: 311-322. (in Korean) 

  24. Kooijman, S.A.L.M. 1987. A safety factor for LC50 values allowing for differences in sensitivity among species. Water Research 21: 269-276. 

  25. Koss, A.M. and Snyder, W.E. 2005. Alternative prey disrupt biocontrol by a guild of generalist predators. Biological Control 32: 243-251. 

  26. Lee, C.W., Jung, C.W., Han, S.W., Kang, L.S. and Lee, J.H. 2001. The removal of algae by oxidation and coagulation process. Journal of Korea Society of Environmental Engineers 23: 1527-1536. (in Korean) 

  27. Lim, B.J., Kim, S.H. and Jun, S.O. 2002. Application of various plants as an inhibitor of algal growth: studies in barge enclosure and artificially eutrophicated pond. Korean Journal of Limnology 35: 123-132. (in Korean) 

  28. Lurling, M. and Oosterhout, F.V. 2013. Case study on the efficacy of a lanthanum-enriched clay (Phoslock(R)) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710: 253-263. 

  29. Margalef, R. 1958. Information theory in ecology. General Systems 3: 36-71. 

  30. McNaughton, S.J. 1967. Relationships among functional properties of Californian grassland. Nature 216: 168-169. 

  31. Menna-Barreto, R.F., Correa, J.R., Cascabullho, C.M., Fernandes, M.C., Pinto, A.V., Soares, M.J. and De Castro, S.L. 2009. Napthtoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 136: 499-510. 

  32. Monks, T.J., Hanzlik, R.P., Cohen, G.M., Ross, D. and Graham, D.G. 1992. Quinone chemistry and toxicity. Toxicology and Applied Pharmacology 112: 2-16. 

  33. Morin, P.J. 2011. Community Ecology. Wiley Blackwell, Oxford, UK. 

  34. O'Brien, P.J., 1991. Molecular mechanisms of quinone cytotoxicity. Chemico-Biological Interaction 80: 1-41. 

  35. Park, M.H., Lee, S.J., Yoon, B.D. and Oh, H.M. 2001. Effects of cell CaSi and bioflocculant on the control of algal bloom. Korean Journal of Environmental Biology 19: 129-135. (in Korean) 

  36. Pielou, E.C. 1969. Shannon's formula as a measure of specific diversity: its use and misuse. The American Naturalist 100: 463-465. 

  37. Porter, K.G. and Feig, Y.S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943-948 

  38. Proctor, L.M. and Fuhrman, J.A. 1990. Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60-62. 

  39. Sasaki, J., Aschmann, S.M. and Kwok, E.S.C., Atkinson, R. and Arey, J. 1997. Products of the gas-phase OH and $NO_3$ radical-initiated reactions of naphthalene. Environmental Science Technology 31: 3173-3179. 

  40. Shigui, R. 1993. Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling. Journal of Mathematical Biology 31: 633-654. 

  41. Tilman, D. and Kilham, S.S. 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. Journal of Phycology 12:375-383. 

  42. Yamamoto, M., Murai, H. Takeda, A., Okunishi, S. and Morisaki, S. 2005. Bacterial flora of the biofilm Formed on the submerged surface of the reed Phragmites australis. Microbes and Environments 20: 14-24. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로