$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa

Ecotoxicology and environmental safety, v.161, 2018년, pp.497 - 506  

Middepogu, Ayyaraju (Department of Environmental Science, Zhejiang University) ,  Hou, Jie (Department of Environmental Science, Zhejiang University) ,  Gao, Xuan (Department of Environmental Science, Zhejiang University) ,  Lin, Daohui (Department of Environmental Science, Zhejiang University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Titanium dioxide nanoparticles (n-TiO2) have been used in numerous applications, which results in their release into aquatic ecosystems and impact algal populations. A possible toxic mechanism of n-TiO2 on algae is via the disruption of the photosynthetic biochemical pathways, which yet re...

주제어

참고문헌 (59)

  1. Alberts 2002 Molecular Biology of the Cell 

  2. Environ. Pollut. Amde 230 250 2017 10.1016/j.envpol.2017.06.064 Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review 

  3. Spectrochim. Acta A Mol. Biomol. Spectrosc. Bendjabeur 190 494 2018 10.1016/j.saa.2017.09.045 DFT and TD-DFT insights, photolysis and photocatalysis investigation of three dyes with similar structure under UV irradiation with and without TiO2 as a catalyst: effect of adsorption, pH and light intensity 

  4. Aquat. Toxicol. Chae 173 94 2016 10.1016/j.aquatox.2016.01.011 Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish 

  5. J. Biotechnol. Chen 162 28 2012 10.1016/j.jbiotec.2012.05.009 A look at diacylglycerol acyltransferases (dgats) in algae 

  6. seeds J. Agric. Biotechnol. Chen 7 316 1998 Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus 

  7. Ecotoxicol. Environ. Saf. Chen 84 155 2012 10.1016/j.ecoenv.2012.07.019 Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii 

  8. Biochimie Choquet 82 615 2000 10.1016/S0300-9084(00)00609-X Synthesis, assembly and degradation of thylakoid membrane proteins 

  9. Food Microbiol. Chorianopoulos 28 164 2011 10.1016/j.fm.2010.07.025 Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing 

  10. Sci. Total Environ. da Costa 565 951 2016 10.1016/j.scitotenv.2016.01.028 Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii 

  11. Sci. Total Environ. Deng 575 87 2017 10.1016/j.scitotenv.2016.10.003 Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum 

  12. Nature Elston 391 510 1998 10.1038/35185 Energy transduction in ATP synthase 

  13. Bioresour. Technol. Fan 164 214 2014 10.1016/j.biortech.2014.04.087 The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription 

  14. Nucleic Acids Res. Fukuzawa 18 6441 1990 10.1093/nar/18.21.6441 Nucleotide sequences of two genes cah1 and cah2 which encode carbonic anhydrase polypeptides in Chlamydomonas reinhardtii 

  15. Environ. Sci.: Nano Gao 5 720 2018 Distinct effects of soluble and bound exopolymeric substances on algal bioaccumulation and toxicity of anatase and rutile TiO2 nanoparticles 

  16. Plant Physiol. Biochem. Gill 48 909 2010 10.1016/j.plaphy.2010.08.016 Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants 

  17. Environ. Sci. Technol. Gottschalk 43 9216 2009 10.1021/es9015553 Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions 

  18. Anal. Biochem. Griffith 106 207 1980 10.1016/0003-2697(80)90139-6 Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine 

  19. Q. Rev. Biol. Hildebrand 81 2006 Plant biochemistry. An update and translation of the German third edition. By Hans-Walter Heldt in cooperation with Fiona Heldt 

  20. J. Biosci. Bioeng. Hong 101 185 2006 10.1263/jbb.101.185 Association of photosynthesis and photocatalytic inhibition of algal growth by TiO2 

  21. Plant Mol. Biol. Itoh 41 321 1999 10.1023/A:1006369104530 Two ftsh-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga Cyanidioschyzon merolae 

  22. Chem. Eur. J. Jang 22 12022 2016 10.1002/chem.201600815 Eliminated phototoxicity of TiO2 particles by an atomic-layer-deposited Al2O3 coating layer for UV-protection applications 

  23. Chem. Eng. J. Ji 170 525 2011 10.1016/j.cej.2010.11.026 Toxicity of oxide nanoparticles to the green algae Chlorella sp 

  24. Bioresour. Technol. Johnson 166 541 2014 10.1016/j.biortech.2014.05.097 Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp 

  25. PLoS One Kulacki 7 7 2012 10.1371/journal.pone.0047130 Effects of nano-titanium dioxide on freshwater algal population dynamics 

  26. Ecotoxicol. Environ. Safe Kumar 104 51 2014 10.1016/j.ecoenv.2014.01.042 Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence 

  27. Aquat. Toxicol. Li 158 1 2015 10.1016/j.aquatox.2014.10.014 Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production 

  28. Water Sci. Technol. Li 68 722 2013 10.2166/wst.2013.279 Effects of fluoride and chloride on the growth of Chlorella pyrenoidosa 

  29. Water Res. Lin 46 4477 2012 10.1016/j.watres.2012.05.035 The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp 

  30. Nanomaterials Liu 8 95 2018 10.3390/nano8020095 TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae 

  31. Methods Livak 25 402 2001 10.1006/meth.2001.1262 Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method 

  32. Environ. Sci. Technol. Long 2012 46 8458 2012 10.1021/es301802g Systematic and quantitative investigation of the mechanism of carbon nanotubes' toxicity toward algae 

  33. Appl. Biochem. Biotechnol. Lu 177 105 2015 10.1007/s12010-015-1731-y Glucose synthesis in a protein-based artificial photosynthesis system 

  34. Nanotoxicology Magdolenova 8 233 2014 10.3109/17435390.2013.773464 Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles 

  35. Aquat. Toxicol. Melegari 142 431 2013 10.1016/j.aquatox.2013.09.015 Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii 

  36. Environ. Pollut. Menard 159 677 2011 10.1016/j.envpol.2010.11.027 Ecotoxicity of nanosized TiO2. Review of in vivo data 

  37. Chem. Eng. J. Metzler 170 538 2011 10.1016/j.cej.2011.02.002 Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size 

  38. Biophys. Chem. Morelli 182 4 2013 10.1016/j.bpc.2013.06.007 Interaction of CdSe/ZnS quantum dots with the marine diatom Phaeodactylum tricornutum and the green alga Dunaliella tertiolecta: a biophysical approach 

  39. Ecotoxicol. Environ. Saf. Morelli 148 184 2018 10.1016/j.ecoenv.2017.10.024 TiO2 nanoparticles in seawater: aggregation and interactions with the green alga Dunaliella tertiolecta 

  40. OECD 2011 Test No. 201: Freshwater Algae and Cyanobacteria, Growth Inhibition Test. OECD Guidelines for the Testing of Chemicals 

  41. Nanoscale Patra 4 343 2012 10.1039/C1NR11313E Optical materials based on molecular nanoparticles 

  42. Tubercle Prioli 66 99 1985 10.1016/0041-3879(85)90074-1 Rapid methods for counting mycobacteria - comparison of methods for extraction of mycobacterial adenosine triphosphate (ATP) determined by firefly luciferase assay 

  43. Sci. Rep. Razzak 7 9279 2017 10.1038/s41598-017-09473-x Evolution of rubisco complex small subunit transit peptides from algae to plants 

  44. Renger 2013 Energetics, Kinetics and Mechanism of Oxidative Water Splitting in Photosynthesis. Photosynthesis Research for Food, Fuel and the Future 

  45. Int. J. Plant Sci. Ritchie 171 575 2010 10.1086/653131 The use of pulse amplitude modulation (PAM) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium Spp. (D. Cv. Viravuth Pink) 

  46. Environ. Sci. Technol. Schwab 45 6136 2011 10.1021/es200506b Are carbon nanotube effects on green algae caused by shading and agglomeration? 

  47. J. Appl. Microbiol. Shao 119 885 2015 10.1111/jam.12873 Identification of pesticide varieties and concentrations by detecting characteristics of Chlorella pyrenoidosa 

  48. Oxyg. Photosynth.: Light React. Simpson 493 1996 Light-harvesting complexes of plants and algae: introduction, survey and nomenclature 

  49. Renew. Sust. Energ. Rev. Singh 50 431 2015 10.1016/j.rser.2015.05.024 Effect of temperature and light on the growth of algae species: a review 

  50. Genet. Mol. Res. Sun 13 8411 2014 10.4238/2014.October.20.17 Gene expression profiles of the heterotrophic microalga Chlorella pyrenoidosa F-9 

  51. Mol. Biotechnol. Tang 45 121 2010 10.1007/s12033-010-9255-8 Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi 

  52. Funct. Mater. Lett. Tong 5 2 2012 10.1142/S1793604712600065 Preparation of nanocrystalline ZnO/TiO2 film and its application to dye-sensitized solar cells 

  53. Sci. Total Environ. Wang 565 818 2016 10.1016/j.scitotenv.2016.03.164 TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum 

  54. Sci. Total Environ. Xia 508 525 2015 10.1016/j.scitotenv.2014.11.066 Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: growth inhibition, oxidative stress and internalization 

  55. Ecotoxicol Environ. Saf. Xiao 133 211 2016 10.1016/j.ecoenv.2016.07.026 Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa 

  56. Nanotoxicology Zhang 11 1115 2017 10.1080/17435390.2017.1398358 Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae 

  57. Arch. Environ. Contam. Toxicol. Zhang 67 593 2014 10.1007/s00244-014-0067-x Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions 

  58. J. Mol. Evol. Zhang 64 321 2007 10.1007/s00239-006-0058-2 Evolution of the inner light-harvesting antenna protein family of cyanobacteria, algae, and plants 

  59. Acta Ecol. Sin. Zhu 28 3507 2008 Aquatic ecotoxicities of nanoscale TiO2, ZnO and Al2O3 water suspensions 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로