$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Ginsenosides, the major active component of ginseng, are traditionally used to treat various diseases, including cancer, inflammation, and obesity. Among these, compound K (CK), an intestinal bacterial metabolite of the ginsenosides Rb1, Rb2, and Rc from Bacteroides JY-6, is reported to inhibit canc...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • However, its mechanism of action remains unclear. The aim of the study was to evaluate the anticancer effects of CK in the human breast cancer cell line MCF-7, focusing particularly on programmed necrosis and its associated signaling pathways. We investigated whether CK (i) has anticancer activity in MCF-7 cells and (ii) induces cell death via GSK3β.
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. 1998. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol. 50: 1155-1160. 

  2. Artus C, Boujrad H, Bouharrour A, Brunelle MN, Hoos S, Yuste VJ, et al. 2010. AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. EMBO J. 29: 1585-1599. 

  3. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. 2002. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull. 25: 743-747. 

  4. Beurel E, Jope RS. 2006. The paradoxical pro- and antiapoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog. Neurobiol. 79: 173-189. 

  5. Choi KH, Min JY, Ganesan P, Bae IH, Kwak HS. 2015. Physicochemical and sensory properties of red ginseng extracts or red ginseng hydrolyzates-added Asiago cheese during ripening. Asian Australas J. Anim. Sci. 28: 120-126. 

  6. Diehl JA, Cheng M, Roussel MF, Sherr CJ. 1998. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12: 3499-3511. 

  7. Edinger AL, Thompson CB. 2004. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16: 663-669. 

  8. Eom JM, Seo MJ, Baek JY, Chu H, Han SH, Min TS, et al. 2010. Alpha-eleostearic acid induces autophagy-dependent cell death through targeting AKT/mTOR and ERK1/2 signal together with the generation of reactive oxygen species. Biochem. Biophys. Res. Commun. 391: 903-908. 

  9. Gregory MA, Qi Y, Hann SR. 2003. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem. 278: 51606-51612. 

  10. Grimes CA, Jope RS. 2001. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 65: 391-426. 

  11. Haince JF, Rouleau M, Hendzel MJ, Masson JY, Poirier GG. 2005. Targeting poly(ADP-ribosyl)ation: a promising approach in cancer therapy. Trends Mol. Med. 11: 456-463. 

  12. Hao HP, Zheng X, Wang GJ. 2014. Insights into drug discovery from natural medicines using reverse pharmacokinetics. Trends Pharmacol. Sci. 35: 168-177. 

  13. Hengartner MO. 2000. The biochemistry of apoptosis. Nature 407: 770-776. 

  14. Hu C, Song G, Zhang B, Liu Z, Chen R, Zhang H, Hu T. 2011. Intestinal metabolite compound K of panaxoside inhibits the growth of gastric carcinoma by augmenting apoptosis via Bid-mediated mitochondrial pathway. J. Cell Mol. Med. 16: 96-106. 

  15. Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D. 2012. GSK-3beta: a bifunctional role in cell death pathways. Int. J. Cell Biol. 2012: 930710. 

  16. Jiang X, Perez-Torres CJ, Thotala D, Engelbach JA, Yuan L, Cates J, et al. 2014. A GSK-3beta inhibitor protects against radiation necrosis in mouse brain. Int. J. Radiat. Oncol. Biol. Phys. 89: 714-721. 

  17. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19: 5720-5728. 

  18. Kang KA, Kim YW, Kim SU, Chae S, Koh YS, Kim HS, et al. 2005. G1 phase arrest of the cell cycle by a ginseng metabolite, compound K, in U937 human monocytic leukamia cells. Arch. Pharm. Res. 28: 685-690. 

  19. Kang KA, Piao MJ, Kim KC, Zheng J, Yao CW, Cha JW, et al. 2013. Compound K, a metabolite of ginseng saponin, inhibits colorectal cancer cell growth and induces apoptosis through inhibition of histone deacetylase activity. Int. J. Oncol. 43: 1907-1914. 

  20. Kim AD, Kang KA, Kim HS, Kim DH, Choi YH, Lee SJ, et al. 2013. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 4: e750. 

  21. Kim AD, Kang KA, Zhang R, Lim CM, Kim HS, Kim DH, et al. 2010. Ginseng saponin metabolite induces apoptosis in MCF-7 breast cancer cells through the modulation of AMPactivated protein kinase. Environ. Toxicol. Pharmacol. 30: 134-140. 

  22. Law CK, Kwok HH, Poon PY, Lau CC, Jiang ZH, Tai WC, et al. 2014. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosisinducing factor. Chin. Med. 9: 11. 

  23. Lee JY, Shin JW, Chun KS, Park KK, Chung WY, Bang YJ, et al. 2005. Antitumor promotional effects of a novel intestinal bacterial metabolite (IH-901) derived from the protopanaxadioltype ginsenosides in mouse skin. Carcinogenesis 26: 359-367. 

  24. Lee YJ, Son YM, Gu MJ, Song KD, Park SM, Song HJ, et al. 2015. Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells. J. Ginseng Res. 39: 29-37. 

  25. Li Y, Zhou T, Ma C, Song W, Zhang J, Yu Z. 2015. Ginsenoside metabolite compound K enhances the efficacy of cisplatin in lung cancer cells. J. Thorac. Dis. 7: 400-406. 

  26. Liu Q, Mier JW, Panka DJ. 2011. Differential modulatory effects of GSK-3beta and HDM2 on sorafenib-induced AIF nuclear translocation (programmed necrosis) in melanoma. Mol. Cancer 10: 115. 

  27. Ming YL, Song G, Chen LH, Zheng ZZ, Chen ZY, Ouyang GL, Tong QX. 2007. Anti-proliferation and apoptosis induced by a novel intestinal metabolite of ginseng saponin in human hepatocellular carcinoma cells. Cell Biol. Int. 31: 1265-1273. 

  28. Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA. 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell Biol. 27: 4844-4862. 

  29. Nicotera P, Lipton SA. 1999. Excitotoxins in neuronal apoptosis and necrosis. J. Cereb. Blood Flow Metab. 19: 583-591. 

  30. Park EJ, Zhao YZ, Kim J, Sohn DH. 2006. A ginsenoside metabolite, 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol, triggers apoptosis in activated rat hepatic stellate cells via caspase-3 activation. Planta Med. 72: 1250-1253. 

  31. Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE. 2007. Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res. 9: R63. 

  32. Shall S, de Murcia G. 2000. Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat. Res. 460: 1-15. 

  33. Soldani C, Scovassi AI. 2002. Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7: 321-328. 

  34. Son YM, Kwak CW, Lee YJ, Yang DC, Park BC, Lee WK, et al. 2010. Ginsenoside Re enhances survival of human CD4+ T cells through regulation of autophagy. Int. Immunopharmacol. 10: 626-631. 

  35. Wang SH, Shih YL, Kuo TC, Ko WC, Shih CM. 2009. Cadmium toxicity toward autophagy through ROS-activated GSK-3beta in mesangial cells. Toxicol. Sci. 108: 124-131. 

  36. Yan Q, Zhou W, Shi XL, Zhou P, Ju DW, Feng MQ. 2010. Biotransformation pathways of ginsenoside Rb1 to compound K by beta-glucosidases in fungus Paecilomyces Bainier sp 229. Process Biochem. 45: 1550-1556. 

  37. Yang H, Rivera Z, Jube S, Nasu M, Bertino P, Goparaju C, et al. 2010. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc. Natl. Acad. Sci. USA 107: 12611-12616. 

  38. Yang J, Fan W, Xiao H, Guan C, Cao C, Shao H, et al. 2010. Genome shuffling method of Bacillus subtilis. Sheng Wu Gong Cheng Xue Bao 26: 1385-1392. 

  39. Yeh CT, Yao CJ, Yan JL, Chuang SE, Lee LM, Chen CM, et al. 2011. Apoptotic cell death and inhibition of Wnt/betacatenin signaling pathway in human colon cancer cells by an active fraction (HS7) from Taiwanofungus camphoratus. Evid. Based Complement. Alternat. Med. 2011: 750230. 

  40. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. 1996. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10: 1443-1454. 

  41. Zhang Z, Du GJ, Wang CZ, Wen XD, Calway T, Li Z, et al. 2013. Compound K, a ginsenoside metabolite, inhibits colon cancer growth via multiple pathways including p53-p21 interactions. Int. J. Mol. Sci. 14: 2980-2995. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로