$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Immobilization of Lactase onto Various Polymer Nanofibers for Enzyme Stabilization and Recycling 원문보기

Journal of microbiology and biotechnology, v.25 no.8, 2015년, pp.1291 - 1298  

Jin, Lihua (College of Bioengineering, Beijing Polytechnic) ,  Li, Ye (College of Bioengineering, Beijing Polytechnic) ,  Ren, Xiang-Hao (Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture) ,  Lee, Jung-Heon (Department of Chemical and Biochemical Engineering, Chosun University)

Abstract AI-Helper 아이콘AI-Helper

Five different polymer nanofibers, namely, polyaniline nanofiber (PANI), magnetically separable polyaniline nanofiber (PAMP), magnetically separable DEAE cellulose fiber (DEAE), magnetically separable CM cellulose fiber (CM), and polystyrene nanofiber (PSNF), have been used for the immobilization of...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • This study examined the stability of lactase immobilized on the following five different polymer nanofibers: polyaniline nanofiber (PANI), polyaniline magnetically separable nanofiber (PAMP), magnetically separable DEAE cellulose fiber (DEAE), magnetically separable CM cellulose fiber (CM), and polystyrene nanofiber (PS). The activities of the free and immobilized lactases were compared under various conditions, including pH and temperature.

대상 데이터

  • Lactase (E.C.3.2.1.23) from Agaricus bisporus BioChemika powder was purchased from Fluka AG (Switzerland). O-Nitrophenyl-D-galactopyranoside (ONGP), bovine serum albumin standard (BSA), polyaniline, DEAE-cellulose, CM-cellulose, and lactose were obtained from Sigma-Aldrich (St.

이론/모형

  • The rate of enzymatic hydrolysis of ONPG was expressed using the Michaelis-Menten equation. The kinetic constants (Vmax and Km) were calculated using linear regression analysis based on the least-square method.
  • The kinetics of the immobilized enzymes was determined using the standard experiments to measure the kinetic parameters using ONPG as the substrate. The rate of enzymatic hydrolysis of ONPG was expressed using the Michaelis-Menten equation.
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. Al-Muftah AE, Abu-Reesh IM. 2005. Effects of internal mass transfer and product inhibition on a simulated immobilized enzyme-catalyzed reactor for lactose hydrolysis. Biochem. Eng. J. 23: 139-153. 

  2. Al-Muftah AE, Abu-Reesh IM. 2005. Effects of simultaneous internal and external mass transfer and product inhibition on immobilized enzyme-catalyzed reactor. Biochem. Eng. J. 27: 167-178. 

  3. Ansari SA, Husain Q. 2011. Immobilization of Kluyveromyces lactis β-galactosidase on concanavalin A layered aluminium oxide nanoparticles — Its future aspects in biosensor applications. J. Mol. Catal. B Enzym. 70: 119-126. 

  4. Bayramoglu G, Tunali Y, Arica MY. 2007. Immobilization of β-galactosidase onto magnetic poly(GMA-MMA) beads for hydrolysis of lactose in bed reactor. Catal. Commun. 8: 1094-1101. 

  5. Beyler-Çiğil A, Çakmakçı E, Danış Ö, Demir S, Kahraman MV. 2013. α-Amylase immobilization on modified polyimide material. Chem. Eng. Trans. 32: 1687-1692. 

  6. de Lathouder KM, Lozano-Castello D, Linares-Solano A, Kapteijn F, Moulijn JA. 2006. Carbon coated monoliths as support material for a lactase from Aspergillus oryzae: characterization and design of the carbon carriers. Carbon 44: 3053-3063. 

  7. de Lathouder KM, Lozano-Castello D, Linares-Solano A, Wallin SA, Kapteijn F, Moulijn JA. 2007. Carbon-ceramic composites for enzyme immobilization. Microporous Mesoporous Mater. 99: 216-223. 

  8. Facin BR, Moret B, Baretta D, Belfiore LA, Paulino AT. 2015. Immobilization and controlled release of β-galactosidase from chitosan-grafted hydrogels. Food Chem. 179: 44-51. 

  9. Giacomini C, Irazoqui G, Batista-Viera F, Brena BM. 2001. Influence of the immobilization chemistry on the properties of immobilized β-galactosidases. J. Mol. Catal B Enzym. 11: 597-606. 

  10. Haider T, Husain Q. 2007. Calcium alginate entrapped preparations of Aspergillus oryzae β-galactosidase: its stability and applications in the hydrolysis of lactose. Int. J. Biol. Macromol. 41: 72-80. 

  11. Jimenez-Guzman J, Sarabia-Leos C, Cruz-Guerrero AE, Rodriguez-Serrano GM, Lopez-Munguia A, Gomez-Ruiz L, Garcia-Garibay M. 2006. Interaction between β-lactoglobulin and lactase and its effect on enzymatic activity. Int. Dairy J. 16: 1169-1173. 

  12. Jochems P, Mueller T, Satyawali Y, Diels L, Dejonghe W, Hanefeld U. 2015. Active site titration of immobilized β-galactosidase for the determination of active enzymes. Biochem. Eng. J. 93: 137-141. 

  13. Klaus B, Volker Kasche UTB. 2005. Biocatalysts and Enzyme Technology. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. 

  14. Mammarella EJ, Rubiolo AC. 2006. Predicting the packedbed reactor performance with immobilized microbial lactase. Process Biochem. 41: 1627-1636. 

  15. Numanoglu Y, Sungur S. 2004. β-Galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using a cellulose-gelatin carrier system. Process Biochem. 39: 705-711. 

  16. Obon JM, Castellar MR, Iborra JL, Manjon A. 2000. [beta]-Galactosidase immobilization for milk lactose hydrolysis: a simple experimental and modelling study of batch and continuous reactors. Biochem. Educ. 28: 164-168. 

  17. Ozdural AR, Tanyolac D, Boyaci IH, Mutlu M, Webb C. 2003. Determination of apparent kinetic parameters for competitive product inhibition in packed-bed immobilized enzyme reactors. Biochem. Eng. J. 14: 27-36. 

  18. Park S, Kim SH, Won K, Choi JW, Kim YH, Kim HJ, et al. 2015. Wood mimetic hydrogel beads for enzyme immobilization. Carbohydr. Polym. 115: 223-229. 

  19. Patel SK, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK. 2014. Immobilization of laccase on SiO 2 nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647. 

  20. Peppler HG, Reed G. 1987. Enzymes in food and feed processing. Biotechnology 7a: 578-580. 

  21. Pessela BCC, Mateo C, Fuentes M, Vian A, Garcia JL, Carrascosa AV, et al. 2003. The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: complete hydrolysis of lactose in dairy products. Enzym. Microb. Technol. 33: 199-205. 

  22. Rogalski J, Dawidowicz A, Leonowicz A. 1994. Lactose hydrolysis in milk by immobilized β-galactosidase. J. Mol. Catal. 93: 233-245. 

  23. Sharma SK, Singhal R, Malhotra BD, Sehgal N, Kumar A. 2004. Lactose biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene). Biosens. Bioelectron. 20: 651-657. 

  24. Song Y-S, Lee H-U, Park C, Kim S-W. 2013. Optimization of lactulose synthesis from whey lactose by immobilized β-galactosidase and glucose isomerase. Carbohydr. Res. 369: 1-5. 

  25. Talbert JN, Goddard JM. 2013. Characterization of lactaseconjugated magnetic nanoparticles. Process Biochem. 48: 656-662. 

  26. Talbert JN, Goddard JM. 2013. Influence of nanoparticle diameter on conjugated enzyme activity. Food Bioprod. Process. 91: 693-699. 

  27. Tanriseven A, Dogan S. 2002. A novel method for the immobilization of β-galactosidase. Process Biochem. 38: 27-30. 

  28. Tatavarty R, Hwang ET, Park J-W, Kwak J-H, Lee J-O, Gu MB. 2011. Conductive quantum dot-encapsulated electrospun nanofibers from polystyrene and polystyrene-co-maleic anhydride copolymer blend as gas sensors. React. Funct. Polym. 71: 104-108. 

  29. Urrutia P, Mateo C, Guisan JM, Wilson L, Illanes A. 2013. Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochem. Eng. J. 77: 41-48. 

  30. Van de Voorde I, Goiris K, Syryn E, Van den Bussche C, Aerts G. 2014. Evaluation of the cold-active Pseudoalteromonas haloplanktis β-galactosidase enzyme for lactose hydrolysis in whey permeate as primary step of D -tagatose production. Process Biochem. 49: 2134-2140. 

  31. Verma ML, Barrow CJ, Kennedy JF, Puri M. 2012. Immobilization of β- D -galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int. J. Biol. Macromol. 50: 432-437. 

  32. Vieira DC, Lima LN, Mendes AA, Adriano WS, Giordano RC, Giordano RLC, Tardioli PW. 2013. Hydrolysis of lactose in whole milk catalyzed by β-galactosidase from Kluyveromyces fragilis immobilized on chitosan-based matrix. Biochem. Eng. J. 81: 54-64. 

  33. Wong DE, Dai M, Talbert JN, Nugen SR, Goddard JM. 2014. Biocatalytic polymer nanofibers for stabilization and delivery of enzymes. J. Mol. Catal. B Enzym. 110: 16-22. 

  34. Zhou QZK, Chen XD. 2001. Immobilization of β-galactosidase on graphite surface by glutaraldehyde. J. Food Eng. 48: 69-74. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로