$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

백금 나노입자 전착의 전기화학적 분석
Electrochemical Analysis of the Electrodeposition of Platinum Nanoparticles 원문보기

Korean chemical engineering research = 화학공학, v.53 no.5, 2015년, pp.540 - 544  

이혜민 (아주대학교 화학공학과, 에너지시스템학과) ,  조성운 (아주대학교 화학공학과, 에너지시스템학과) ,  김준현 (아주대학교 화학공학과, 에너지시스템학과) ,  김창구 (아주대학교 화학공학과, 에너지시스템학과)

초록
AI-Helper 아이콘AI-Helper

나노입자를 기판 위에 직접 부착시키는 방법인 전착(electrodeposition)을 이용하여 저가의 그라파이트(graphite) 기판 위에 백금 나노입자를 직접 부착시킬 수 있는 전착 욕(bath)을 개발하였고, 백금 나노입자 전착반응의 전기화학적인 특성을 분석하였다. 백금 나노입자 전착의 분극 거동 분석을 통하여 반응메카니즘을 파악하였고, 순환전위측정(cyclic voltammetry)을 통하여 백금 나노입자 전착에서는 물질전달이 속도결정단계임을 확인하였다. 또한 시간대전류법(chronoamperometry)으로 분석한 백금 나노입자 전착의 전류밀도 변화 양상은 백금 나노입자의 결정핵 생성 메카니즘이 instantaneous로 판명되었다. 그라파이트는 다른 탄소계열 기판에 비하여 매우 저가이기 때문에 그라파이트 기판 위에 백금 나노입자를 직접 부착시키는 기술은 산업적으로 유용할 것으로 기대한다.

Abstract AI-Helper 아이콘AI-Helper

A bath for electrodeposition of platinum nanoparitcles on low-cost graphite substrates was developed to attach nanoparticles directly onto a substrate, and electrochemical characteristics of the electrodeposition of platinum nanoparticles were investigated. The reaction mechanism was examined by the...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 탄소 기판 중에서 가장 저가인 normal graphite를 사용하여 백금 나노입자를 전착하고 전착반응의 전기 화학적인 특성을 살펴보았다. 백금 나노입자 전착 시 분극 거동, 순환전위측정, 시간 대전류측정을 통하여 백금 나노입자 전착의 반응 메카니즘과 결정핵 생성 메카니즘을 규명하였다.

가설 설정

  • (a) Cyclic voltammograms of an aqueous electrolyte containing 10 mM of H2PtCl6 and 10 mM of TSC on a graphite disk electrode at various scan rates. (b) A plot of peak current density with respect to square root of scan rate to check whether diffusion is a rate-limiting step.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
나노입자를 반응의 매개체로 사용할 경우 장점은 무엇인가? 나노입자(nanoparticle)는 표면적 대 부피의 비율이 매우 커서 반응의 매개체로 사용될 경우 반응속도를 높일 수 있는 장점이 있고, 입자 표면구조의 특이함으로 인하여 독특한 표면반응을 나타낸다. 이러한 과립(granule) 형태의 나노입자에 대한 연구는 1960년대에 시작된 이래 지속적으로 발전해왔다[1].
전착은 어떤 방법인가? 나노입자를 기판 위에 직접 부착시키는 방법인 전착(electrodeposition)을 이용하여 저가의 그라파이트(graphite) 기판 위에 백금 나노입자를 직접 부착시킬 수 있는 전착 욕(bath)을 개발하였고, 백금 나노입자 전착반응의 전기화학적인 특성을 분석하였다. 백금 나노입자 전착의 분극 거동 분석을 통하여 반응메카니즘을 파악하였고, 순환전위측정(cyclic voltammetry)을 통하여 백금 나노입자 전착에서는 물질전달이 속도결정단계임을 확인하였다.
졸-겔(sol-gel)법과 화학적 환원 (chemical reduction)법은 각각 어떤 방법인가? 지금까지 백금 나노입자는 주로 졸-겔(sol-gel)법과 화학적 환원 (chemical reduction)법에 의하여 제조되어 왔다[13,14]. 졸-겔 방법은 백금 나노입자의 전구체로부터 콜로이드 용액을 만들고 이 콜로이드 입자로부터 나노입자를 얻는 방식이다. 또한 화학적 환원법은 백금이온이 들어있는 용액에 환원제를 첨가하여 백금이온이 환원되면서 동시에 결정으로 성장되는 방법이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (18)

  1. Abeles, B., Sheng, P., Coutts, M. D. and Arie, Y., "Structural and Electrical Properties of Granular Metal Films," Adv. Phys., 24, 407-461(1975). 

  2. Lu, G. and Zangari, G., "Electrodeposition of Platinum on Highly Oriented Pyrolytic Graphite. Part I: Electrochemical Characterization," J. Phys. Chem. B, 109, 7998-8007(2005). 

  3. Lu, G. and Zangari, G., "Electrodeposition of Platinum Nanoparticles on Highly Oriented PyroliticGraphite Part II: Morphological Characterization by Atomic Force Microscopy," Electrochim. Acta, 51, 2531-2538(2006). 

  4. Duarte, M. M. E., Pilla, A. S., Sieben, J. M. and Mayer, C. E., "Platinum Particles Electrodeposition on Carbon Substrates," Electrochem. Commun., 8, 159-164(2006). 

  5. Tsai, M.-C.,Yeh, T.-K. and Tsai, C.-H., "An Improved EelectrodepositionTechnique for Preparing Platinum and Platinum-Ruthenium Nanoparticles on Carbon Nanotubes Directly Grown on Carbon Cloth for Methanol Oxidation," Electrochem. Commun., 8, 1445-1452(2006). 

  6. El-Deab, M. S. and Ohsaka, T., "Electrocatalysis by Nanoparticles: Oxygen Reduction on Gold Nanoparticles-Electrodeposited Platinum Electrodes," J. Electroanal. Chem., 553, 107-115(2003). 

  7. Naohara, H., Ye, S. and Uosaki, K., "Electrocatalytic Reactivity for Oxygen Reduction at Epitaxially Grown Pd Thin Layers of Various Thickness on Au(111) and Au(100)," Electrochim. Acta, 45, 3305-3309(2000). 

  8. Kim, K. M., Kang, K.-Y., Choi, M. G., and Lee, Y.-G., "Anode Properties of Sn-Ni Nanoparticle Composites for Rechargeable Lithium Batteries," Korean Chem. Eng. Res., 49, 846-850(2011). 

  9. Bae, E., Park, H. J., Yoon, J., Kim, Y., Choi, K. and Yi, J., "Bacterial uptake of Silver Nanoparticles in the Presence of Humic Acid and $AgNO_3$ ," Korean J. Chem. Eng., 28, 267-271(2011). 

  10. Guo, L., Liang, H., Xu, T., Li, C., Meng, Q., Liu, H. and Huang, Y., "A Facile Approach to Preparing Palladium Nanoparticlesembedded Polyvinylpyrrolidone (PVP) Heterogeneous Hybrid Nanofibers Mats by Electrospinning," Korean J. Chem. Eng., 30, 2142-2150(2013). 

  11. Wu, G., Li, L. and Xu, B.-Q., "Effect of Electrochemical Polarization of PtRu/C Catalysts on Methanol Electrooxidation," Electrochim. Acta, 50, 1-10(2004). 

  12. Oliveira, R. T. S., Santos, M. C., Marcussi, B. G., Nascente, P. A. P., Bulhoes, L. O. S. and Pereira, E. C., "The Use of a Metallic Bilayer for the Oxidation of Small Organic Molecules," J. Electroanal. Chem., 575, 177-182(2005). 

  13. Pingarron, J. M., Yanez-Sedeno, P. and Gonzalez-Cortes, A., "Gold Nanoparticle-Based Electrochemical Biosensors," Electrochim. Acta, 53, 5848-5866(2008). 

  14. Ramirez, E., Erades, L., Philippot, K., Lecante, P. and Chaudret, B., "Shape Control of Platinum Nanoparticles," Adv. Funct. Mater., 17, 2219-2228(2007). 

  15. Guo, D.-J. and Li, H.-L., "High Dispersion and Electrocatalytic Properties of Pt Nanoparticles on SWNT Bundles," J. Electroanal. Chem., 573, 197-202(2004). 

  16. Feltham, A. M. and Spiro, M., "Platinized Platinum Electrodes," Chem. Rev., 71, 177-193(1971). 

  17. Bard, A. J. and Faulkner, L.R., Electrochemical. Methods: Fundametals and Applications, 2nd ed., John Wiley & Sons, Inc., Hobeken, NJ(2001). 

  18. Scharifker, B. and Hills, G., "Theoretical and Experimental Studies of Multiple Nucleation," Electrochim. Acta, 28, 879-889(1983). 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로