$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 5G Massive MIMO 실현을 위한 연구 동향 원문보기

電子工學會誌 = The journal of Korea Institute of Electronics Engineers, v.42 no.10 = no.377, 2015년, pp.16 - 34  

이길원 (KAIST) ,  성영철 (KAIST) ,  소정호 (KAIST) ,  서준영 (KAIST)

초록이 없습니다.

질의응답

핵심어 질문 논문에서 추출한 답변
mass ive MIMO의 장점은 무엇인가? 좀 더 자세히 말하면, 최소평균제곱오차 (minimum mean square error; MMSE), zero-forcing (ZF), MRT 빔포머들과 같은 선형 빔포머를 사용해도 각 사용자의 신호대간섭더하기잡음비 (signal-to-interference -plusnoise ratio; SINR)가 안테나의 수 Nt에 선형적으로 증가함이 알려져 있다[3]. 또한, 전체 전송 용량이 기지국의 안테나의 수에 로그적으로 증가하고, 사용자의 수에 따라 선형적으로 증가함이 알려져 있고, 일정한 SINR을 유지하는데 기지국의 송신 전력을 안테나의 수에 반비례하여 줄일 수 있다는 것이 알려져 있다[3].
massive MIMO 기술이란 무엇인가? 5G 이동 통신 시스템의 구체적인 설계 목표는 현재에도 새롭게 정의되고 진화하고 있지만, 가장 기본적인 5G 이동 통신 시스템의 성능 목표 요구량은 1) 면적당 데이터 율 1000배 증가, 2) 사용자당 데이터 율 10~100배 증가, 3) 면적당 연결된 디바이스 10~100배 증가, 4) 에너지 효율 1000배 증대이다[1]. 이러한 요구를 맞추기 위하여 개발되고 있는 여러 기술들 중 하나인 massive MIMO (multiple input multiple output) 기술은 다수의 안테나를 사용하여 적절한 빔형성을 통해 사용자간 간섭을 공간적으로 제거하고 송신 에너지를 최소화하는 동시에 다수의 단말기를 지원하는 기술로, 5G 이동 통신을 위한 핵심 기술로 자리매김하고 있다[2]. 하지만, massive MIMO의 장점을 얻는데 채널 추정 문제, 하드웨어 복잡도 증가 및 장애 등과 같은 여러가지 현실적인 문제점들이 있고 이를 해결하기 위해 많은 연구들이 진행되고 있다.
5G 이동 통신 시스템의 성능 목표 요구량은 무엇인가? ”)라는 슬로건을 내걸고 5G 이동통신 시스템 개발을 주도하고, 4G 대비 높은 요구량을 실현시키는 것을 목표로 하고 있다[1]. 5G 이동 통신 시스템의 구체적인 설계 목표는 현재에도 새롭게 정의되고 진화하고 있지만, 가장 기본적인 5G 이동 통신 시스템의 성능 목표 요구량은 1) 면적당 데이터 율 1000배 증가, 2) 사용자당 데이터 율 10~100배 증가, 3) 면적당 연결된 디바이스 10~100배 증가, 4) 에너지 효율 1000배 증대이다[1]. 이러한 요구를 맞추기 위하여 개발되고 있는 여러 기술들 중 하나인 massive MIMO (multiple input multiple output) 기술은 다수의 안테나를 사용하여 적절한 빔형성을 통해 사용자간 간섭을 공간적으로 제거하고 송신 에너지를 최소화하는 동시에 다수의 단말기를 지원하는 기술로, 5G 이동 통신을 위한 핵심 기술로 자리매김하고 있다[2].
질의응답 정보가 도움이 되었나요?

참고문헌 (64)

  1. METIS Deliverable D1.1. "Scenarios, requirements and KPIs for 5G mobile and wireless system," EU-FP7 Project METIS (ICT-317669) Deliverable 1.1, Apr. 2013. 

  2. F. Rusek et al., "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-46, Jan. 2013. 

  3. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, "Energy and spectral efficiency of very large multiuser MIMO systems," IEEE Trans. Commun., vol. 61, no. 4, pp. 1436-1449, Apr. 2013. 

  4. T. L. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010. 

  5. J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, "Pilot contamination and precoding in multi-cell TDD systems," IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640-2651, Aug. 2011. 

  6. H. Yin, D. Gesbert, M. Filippou, and Y. Liu, "A coordinated approach to channel estimation in large-scale multipleantenna systems," IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 264-273, Feb. 2013. 

  7. R. Muller, M. Vehkapera, and L. Cottatellucci, "Blind pilot decontamination," in Proc. Int. ITG Workshop Smart Antennas, Mar. 2013. 

  8. J. Sohn, S. Yoon, and J. Moon, "When pilots should not be reused across interfering cells in massive MIMO," Proc. IEE ICC Workshop, Jun. 2015. 

  9. J. Guey and L. D. Larsson, "Modeling and evaluation of MIMO systems exploiting channel reciprocity in TDD mode," in Proc. IEEE Veh. Technol. Conf., Sep. 2004. 

  10. J. H. Kotecha and A. M. Sayeed, "Transmit signal design for optimal estimation of correlated MIMO channels," IEEE Trans. Signal Process., vol. 52, no.2, pp. 546-557, Feb. 2004. 

  11. S. Noh, M. D. Zoltowski, Y. Sung, and D. J. Love, "Pilot beam pattern design for channel estimation in massive MIMO systems," IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 787-801, Oct. 2014. 

  12. J. Choi, D. J. Love, and P. Bidigare, "Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory," IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 802-814, Oct. 2014. 

  13. J. So, D. Kim, Y. Lee, and Y. Sung, "Pilot signal design for massive MIMO systems: A received signal-to-noise-ratiobased approach,", IEEE Signal Processing Letter, vol. 22, no. 5, May. 2015. 

  14. C. Doan, S. Emami, D. Sobel, A. Noknejad, and R. Brodersen, "Design considerations for 60 GHz CMOS radios," IEEE Commun. Mag., vol. 42, no. 12, pp. 132-140, 2004. 

  15. A. M. Sayeed, "Deconstructing multiantenna fading channels," IEEE Trans. Signal Process., vol. 50, pp. 2563-2579, Oct. 2002. 

  16. A. M. Sayeed and V. Raghavan, "Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays," IEEE J. Sel. Topics Signal Process., vol. 1, pp. 156-166, Jun. 2007. 

  17. A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath Jr., "Hybrid precoding for millimeter wave cellular systems with partial channel knowledge," in Proc. Inf. Theory and Appl. Workshop, (San Diego, CA), 2013. 

  18. A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath, "Channel estimation and hybrid precoding for millimeter wave cellular systems," IEEE J. Sel. Topics Signal Process., vol. 8, pp. 831-846, Oct. 2014. 

  19. W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, "Compressed channel sensing: a new approach to estimating sparse multipath channels," Proc. IEEE, vol. 98, pp. 1058 -1076, Jun. 2010. 

  20. G. Taubock and F. Hlawatsch, "Compressed sensing based estimation of doubly selective channels using a sparsityoptimized basis expansion," in Proc. Eur. Signal Process. Conf., (Switzerland), Aug. 2008. 

  21. W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, "Compressed channel sensing: a new approach to estimating sparse multipath channels," Proc. IEEE, vol. 98, pp. 1058-1076, Jun. 2010. 

  22. J. He, T. Kim, H. Ghauch, K. Liu, and G. Wang, "Millimeter wave MIMO channel tracking systems," arXiv preprint arXiv:1412.4224, 2014. 

  23. J. Seo, Y. Sung, G. Lee, and D. Kim, "Pilot beam sequence design for channel estimation in millimeter-wave MIMO systems: A POMDP framework," Proc. IEEE SPAWC 2015 Jun. 2015. 

  24. J. Seo, Y. Sung, G. Lee, and D. Kim, "Training beam sequence design for millimeter-wave MIMO systems: A POMDP framework," submitted to IEEE Trans. Signal Process., Apr. 2015. Available at arXiv. 

  25. A. Adhikary, J. Nam, J. Ahn, and G. Caire, "Joint spatial division and multiplexing: The large-scale array regime," IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441-6463, Oct. 2013. 

  26. J. Nam, A. Adhikary, J. Ahn, and G. Caire, "Joint spatial division and multiplexing: Opportunistic beamforming, user grouping and simplified downlink scheduling," IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 876-890, Mar. 2014. 

  27. A. Adhikary et al., "Joint spatial division and multiplexing for mm-wave channels," IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1239-1255, Jul. 2014. 

  28. G. Lee and Y. Sung, "A new approach to user scheduling in massive multiuser MIMO broadcast channels," submitted to IEEE Trans. Inf. Theory. Mar. 2014. Available at arXiv. 

  29. G. Lee and Y. Sung, "Asymptotically optimal simple user scheduling for massive MIMO downlink with two-stage beamforming," Proc. of SPAWC 2014, (Toronto, CA), Jun. 2014. 

  30. J. Chen and V. Lau, "Two-tier precoding for FDD multi-cell massive MIMO time-varying interference networks," IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1230-1238, Jun. 2014. 

  31. A. Liu and V. Lau, "Phase only RF precoding for massive MIMO systems with limited RF chains," IEEE Trans. Signal Process., vol. 62, no. 17, pp. 4505-4515, Sep. 2014. 

  32. D. Kim, G. Lee, and Y. Sung, "Two-stage beamformer design for massive MIMO downlink by trace quotient formulation," IEEE Trans. Commun., vol. 63, no. 6, pp. 2200-2211, Jun. 2015. 

  33. M. Sadek, A. Tarighat, and A. H. Sayed, "A leakage-based precoding scheme for downlink multi-user MIMO channels," IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1711-1721, May 2007. 

  34. R. Zakhour and D. Gesbert, "Coordination on the MISO interference channel using the virtual SINR framework," in Proc. Int. ITG Workshop Smart Antennas, Berlin, Germany, Feb. 2009, pp. 1-7. 

  35. J. Park, G. Lee, Y. Sung, andM. Yukawa, "Coordinated beamforming with relaxed zero forcing: The sequential orthogonal projection combining method and rate control," IEEE Trans. Signal Process., vol. 61, no. 12, pp. 3100-3112, Jun. 2013. 

  36. C. Doan, S. Emami, D. Sobel, A. Niknejad, and R. Brodersen, "Design considerations for 60 GHz CMOS radios," IEEE Commun. Mag., vol. 42, no. 12, pp. 132-140, 2004. 

  37. Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., vol. 49, no. 6, pp. 101-107, 2011. 

  38. O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. Heath, "Spatially sparse precoding in millimeter wave MIMO systems," IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499-1513, Mar. 2014. 

  39. J. Mo and R. W. Heath Jr, "Capacity analysis of onebit quantized MIMO systems with transmitter channel state information," (submitted to IEEE Trans. Signal Process.,) arXiv preprint arXiv:1410.7353v2, Apr. 2015. 

  40. G. Lee, J. Park, Y. Sung, and J. Seo, "A new approach to beamformer design for massive MIMO systems based on k-regularity," in Proc. IEEE GLOBECOM Workshops (GC'12 Workshop), Dec. 2012, pp. 686-690. 

  41. A. Alkhateeb, R. W. Heath Jr., and G. Leus, "Limited feedback hybrid precoding for multi-user millimeter wave systems," (to appear) IEEE Trans. Wireless Commun., 2015. 

  42. J. Via, I. Santamaria, V. Elvira, and R. Eickhoff "A general criterion for analog Tx-Rx beamforming under OFDM transmissions," IEEE Trans. Signal Process., vol. 58, no. 4, Apr. 2010. 

  43. C. Kim, T. Kim, and J.-Y. Seol, "Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems," in Proc. IEEE GLOBECOM Workshops (GC Wkshps), Atlanta, GA, Dec. 2013, pp. 61-65. 

  44. T. Bogale, L. Le, and A. Haghighat, "Hybrid analog-digital beamforming: How many RF chains and phase shifters do we need?", arXiv preprint arXiv:1410.2609v1, Sep. 2014. 

  45. M. Sharif and B. Hassibi, "On the capacity of MIMO broadcast channels with partial side information," IEEE Trans. Inf. Theory, vol. 51, pp. 506-522, Feb. 2005. 

  46. T. Yoo and A. Goldsmith, "On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming," IEEE J. Sel. Areas Commun., vol. 24, pp. 528-541, Mar. 2006. 

  47. A. Tomasoni and G. Caire and M. Ferrari and S. Bellini, "On the selection of semi-orthogonal users for zero-forcing beamforming," in Proc. IEEE ISIT 2009, Jul. 2009. 

  48. H. Hur, A. M. Tulino, and G. Caire, "Network MIMO with linear zero-forcing beamforming: Large system analysis, impact of channel estimation, and reduced-complexity scheduling," IEEE Trans. Inf. Theory, vol. 58, pp. 2911-2934, May 2012. 

  49. R. Zakhour and D. Gesbert, "A two-stage approach to feedback design in multi-user MIMO channels with limited channel state information," IEEE PIMRC 07, Sep. 2007. 

  50. M. Kountouris, D. Gesbert, and T. Salzer, "Enhanced multiuser random beamforming: Dealing with not so large number of user case," IEEE J. Sel. Areas Commun., vol. 27, no. 8, Oct. 2008. 

  51. W. Xu and C. Zhao, "Two-phase multiuser scheduling for multiantenna downlinks exploiting reduced finite-rate feedback," IEEE Trans. Veh. Technol., vol. 59, no. 3, Mar. 2010. 

  52. J. Kim, W. Shin, Y. Hee, and J. Lee, "A novel channel feedback and user scheduling for massive MU-MIMO systems," KICS 2015. 

  53. P. Viswanath, D. N. C. Tse, and R. Laroia, "Opportunistic beamforming using dump antennas," IEEE Trans. Inf. Theory, vol. 48, pp. 1277-1294, Jun. 2002. 

  54. J. Chung, C. Hwang, K. Kim, and Y. K. Kim, "A random beamforming technique in MIMO systems exploiting multiuser diversity," IEEE J. Sel. Areas Commun., vol. 21, pp. 848-855, Jun. 2003. 

  55. T. Al-Naffouri, M. Sharif, and B. Hassibi, "How much does transmit correlation affect the sum-rate scaling of MIMO Gaussian broadcast channels?," IEEE Trans. Commun., vol. 57, pp. 562-572, Feb. 2009. 

  56. Y. Huang, and B. D. Rao, "Random beamforming with heterogeneous users and selective feedback: Individual sum rate and individual scaling laws," IEEE Trans. Wireless Commun., vol. 12, no. 5, May 2013. 

  57. S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh, "Millimeter wave beamforming for wireless backhaul and access in small cell networks," IEEE Trans. Commun., vol. 61, pp. 4391-4403, Oct. 2013. 

  58. C. N. Barati, S. A. Hosseini, S. Rangan, P. Liu, T. Korakis, and S. S Panwar, "Directional cell search for millimeter wave cellular systems," in Proc. IEEE SPAWC 2014, (Toronto, Canada), Jun. 2014. 

  59. A. Alkhateeb, G. Leus, and R. W. Heath Jr., "Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?," arXiv preprint arXiv:1505.00299v1, May 2015. 

  60. G. Lee, Y. Sung, and J. Seo, "Randomly-directional beamforming in millimeter-wave multi-user MISO downlink," arXiv preprint arXiv:1412.1665v2, May 2015. 

  61. G. Lee, Y. Sung, and S. Seo, "How many users are needed for non-trivial performance of random beamforming in highlydirectional mm-wave MIMO downlink?," to appear in Proc. IEEE ITW 2015 (Jeju, Korea), Oct. 2015. 

  62. G. Lee, Y. Sung, and M. Kountouris, "On the performance of randomly directional beamforming between line-of-sight and rich scattering channels," in Proc. IEEE SPAWC 2015, (Stockholm, Sweden,), Jun. 2015. 

  63. G. Lee, Y. Sung, and M. Kountouris, "On the performance of random beamforming in sparse millimeter wave channels," submitted to IEEE J. Sel. Topics Signal Process., Jun. 2015. 

  64. J. L. Vicario, B. Bosisio, C. Anton-Haro, and U. Spagnolini, "Beam selection strategies for orthogonal random beamforming in sparse networks," IEEE Trans. Wireless Commun., vol. 7, pp. 3385-3396, Sep. 2008. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로