$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A New Multiplex-PCR for Urinary Tract Pathogen Detection Using Primer Design Based on an Evolutionary Computation Method 원문보기

Journal of microbiology and biotechnology, v.25 no.10, 2015년, pp.1714 - 1727  

Garcia, Liliana Torcoroma (Program of Bacteriology and Clinical Laboratory, Universidad de Santander - UDES) ,  Cristancho, Laura Maritza (Program of Bacteriology and Clinical Laboratory, Universidad de Santander - UDES) ,  Vera, Erika Patricia (Program of Bacteriology and Clinical Laboratory, Universidad de Santander - UDES) ,  Begambre, Oscar (School of Civil Engineering, Universidad Industrial de Santander)

Abstract AI-Helper 아이콘AI-Helper

This work describes a new strategy for optimal design of Multiplex-PCR primer sequences. The process is based on the Particle Swarm Optimization-Simplex algorithm (Mult-PSOS). Diverging from previous solutions centered on heuristic tools, the Mult-PSOS is selfconfigured because it does not require t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • [9] and [28] with some modifications. One of the main differences between these works and the current study is that the optimization technique employed in this study does not require the definition of any heuristic parameter (mutation probability, crossover rate, and selection rules in genetic algorithms, or cognitive parameters and inertia weight in PSO) in order to obtain a solution.

이론/모형

  • This primer pair, as well as its restrictions, is used for the second optimization process. Both of the two optimization processes are carried out using an adapted PSOS algorithm [7], called Mult-PSOS. For the sake of precision, each step is explained in detail in the next section.
  • DNA sequences from genes of uropathogenic bacteria consigned in the GenBank (http://www.ncbi.nlm.nih.gov/genbank) database were used as templates for in silico primer design experiments by PSOS and for in vitro PCR assays (Table 1). The selection of the bacteria and the genes was made according to Ref.
  • In this study, a set of Multiplex-PCR primers for uropathogenic bacteria detection were designed using a Mult-PSOS tool. In Tables 2 and 3, the sequences and some of the theoretical primer design parameters calculated by Gene Runner 3.
  • 1 TOPO (Invitrogen Life Technologies). The sequence of the insert was confirmed by DNA sequencing and a search by homology was then performed using the BLASTn algorithm (http://www.ncbi.nlm.nih.gov/BLAST) [4]. For the verification of the primer specificity, extracted DNA from Serratia marcescens, Salmonella spp.
  • (b)). To overcome this drawback, we adopted in this work the concept of a self-configured algorithm [7]. This form of algorithm combines two heuristic methods.
  • The results obtained with the proposed algorithm were compared with the primers described by Ref. [28] and the oligonucleotides obtained using the Primer-BLAST tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. Abd-Elsalam KA. 2003. Bioinformatic tools and guideline for PCR primer design. Afr. J. Biotechnol. 2: 91-95. 

  2. Abdeldaim GM, Strålin K, Korsgaard J, Blomberg J, Welinder-Olsson C, Herrmann B. 2010. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis. BMC Microbiol. 10: 310. 

  3. Allawi HT, SantaLucia J. 1997. Thermodynamics and NMR of internal GT mismatches in DNA. Biochemistry 36: 10581-10594. 

  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. 

  5. Amghalia E, Nagi AA, Shamsudin MN, Radu S, Rosli R, Neela V, Rahim RA. 2009. Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in Staphylococcus aureus isolated from Malaysian hospitals. Res. J. Biol. Sci. 4: 444-448. 

  6. Apte A, Daniel S. 2009. PCR primer design. Cold Spring Harb. Protoc. 2009: pdb-ip65. 

  7. Begambre O, Laier JE. 2009. A hybrid particle swarm optimization - simplex algorithm (PSOS) for structural damage identification. Adv. Eng. Softw. 40: 883-891. 

  8. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. 2010. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363: 1005-1015. 

  9. Cheng YH, Chuang LY, Yang CH. 2012. Fuzzy adaptive particle swarm optimization for confronting two-pair primer design. In: Proceedings of the International MultiConference of Engineers and Computer Scientists. IMECS 2012 1. 

  10. Foxman B. 2002. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med. 113: 5-13. 

  11. Gopinath K, Singh S. 2009. Multiplex PCR assay for simultaneous detection and differentiation of Mycobacterium tuberculosis, Mycobacterium avium complexes and other Mycobacterial species directly from clinical specimens. J. Appl. Microbiol. 107: 425-435. 

  12. Grabe M, Bishop MC, Bjerklund-Johansen TE, Botto H, Cek M, Lobel B, et al. 2010. Guidelines on Urological Infections. European Association of Urology. 110. 

  13. Gupta S, Bandyopadhyay D, Paine SK, Gupta S, Banerjee S, Bhattacharya S, Bhattacharya B. 2010. Rapid identification of Mycobacterium species with the aid of multiplex polymerase chain reaction (PCR) from clinical isolates. Open Microbiol. J. 4: 93. 

  14. Johnson JR, Stell AL. 2000. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181: 261-272. 

  15. Kennedy J, Eberhart R. 1995. Particle swarm optimization. Proc. IEEE Int. Conf. Neural Networks 4: 1942-1948. 

  16. Liarte DB, Murta SM, Steindel M, Romanha AJ. 2009. Trypanosoma cruzi: multiplex PCR to detect and classify strains according to groups I and II. Exp. Parasitol. 123: 283-291. 

  17. Martineau F, Picard FJ, Ménard C, Roy PH, Ouellette M, Bergeron MG. 2000. Development of a rapid PCR a ssay specific for Staphylococcus saprophyticus and application to direct detection from urine samples. J. Clin. Microbiol. 38: 3280-3284. 

  18. Mullis KB, Faloona FA. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155: 335. 

  19. Nelder JA, Mead R. 1965. A simplex method for function minimization. Comp. J. 7: 308-313. 

  20. Padmavathy B, Vinoth KR, Amee P, Deepika SS, Vaidehi T, Jaffar ABM. 2012. Rapid and sensitive detection of major uropathogens in a single-pot multiplex PCR assay. Curr. Microbiol. 65: 44-53. 

  21. Rachlin J, Ding C, Cantor C, Kasif S. 2005. MuPlex: multiobjective multiplex PCR assay design. Nucl. Acids Res. 33: 544-547. 

  22. Reddington K, O’Grady J, Dorai-Raj S, Maher M, Van Soolingen D, Barry T. 2011. Novel multiplex real-time PCR diagnostic assay for identification and differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis complex strains. J. Clin. Microbiol. 49: 651-657. 

  23. Shen Q, Shi W-M, Kong W. 2008. Hybrid particle swarm optimization and tabu search approach for selecting gene for tumor classification using gene expression data. Comput. Biol. Chem. 32: 53-60. 

  24. Sibley CD, Peirano G, Church DL. 2012. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology. Infect. Genet. Evol. 12: 505-521. 

  25. Stankowska D, Kwinkowski M, Wieslaw K. 2008. Quantification of Proteus mirabilis virulence factors and modulation by acylated homoserine lactones. J. Microbiol. Immunol. Infect. Dis. 41: 243-253. 

  26. Tsalik EL, Jones D, Nicholson B, Waring L, Liesenfeld O, Park LP, Woods CW. 2010. Multiplex PCR to diagnose bloodstream infections in patients admitted from the emergency department with sepsis. J. Clin. Microbiol. 48: 26-33. 

  27. Weissensteiner T, Nolan T, Bustin SA, Griffin HG, Griffin A. 2010. PCR Technology: Current Innovations, 2 nd Ed. CRC Press, Boca Raton, FL. 

  28. Wu JS, Lee C, Wu CC, Shiue YL. 2004. Primer design using genetic algorithm. Bioinformatics 20: 1710-1717. 

  29. Wu LC, Horng JT, Huang HY, Lin FM, Huang HD, Tsai MF. 2007. Primer design for multiplex PCR using a genetic algorithm. Soft Comput. 11: 855-863. 

  30. Xiao L. 2010. Molecular epidemiology of cryptosporidiosis: an update. Exp. Parasitol. 124: 80-89. 

  31. Yang CH, Cheng YH, Chuang LY, Chang HW. 2009. Genetic algorithm for the design of confronting two-pair primers, pp. 242-247 In: Bioinformatics and BioEngineering, 2009. BIBE'09. Ninth IEEE International Conference. 

  32. Yang CH, Lin MC, Chuang LY. 2010. Primer design for the PCR in methylation studies using PSO. Proceedings of the International MultiConference of Engineers and Computer Scientists. 1. 

  33. Yang CH, Chang HW, Ho CH, Chou YC, Chuang LY. 2011. Conserved PCR primer set designing for closely-related species to complete mitochondrial genome sequencing using a sliding window-based PSO algorithm. PloS One 6: 17729. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로