$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

데이터분석을 이용한 서술형 강의평가 연구

A Study on the Data Analysis of the Written Comments in Lecture Evaluation

초록

대학 교육현장에서 강의와 관련한 수많은 비정형화된 데이터가 생산되고 있는데 그중 관심 있게 볼 부분은 학생들의 서술형 강의평가이며, 본 논문에서는 대학에서 시행하는 서술형 강의평가를 활용하여 분석하였다. 분석방법으로 먼저 학기가 끝난 후 수행된 강의평가에서 동일학과 유사과목을 강의했던 교수자 2인을 선택하고 학생들이 평가한 서술형 강의평가 내용에서 기존 문헌연구를 통해 얻은 학습자 상호작용과 관련한 키워드를 추출하고 이를 코사인유사도 분석을 이용해 상호작용 점수를 도출한 후 기존의 5점척도 강의평가 점수와 비교하였다. 분석을 위해 텍스트 마이닝 기법을 활용하였으며 분석결과 수업에서 필요한 학습자 상호작용은 주로 흥미, 기회, 열정, 재미, 참여, 유익, 친절 등으로 나타났다. 기존의 5점 척도 강의평가 점수와 새롭게 도출한 서술형 강의평가 점수를 비교했을 때 유사한 것으로 나타났으며 특히, 상호작용이 높을수록 더 높은 점수가 나타났다. 본 연구에서는 상호작용점수라는 새로운 지표를 만들었고 이에 대한 가능성을 확인하였다. 향후 학과단위 또는 학교단위의 데이터분석을 통해 정성적, 정량적 강의평가 지표를 개발함으로써 기존의 평가방식을 개선할 필요가 있다.

Abstract

A number of non-structured data associated with lectures in the field of university education have been generated and it is an important consideration of the students's written comments lecture evaluation. The purpose of this study is to find student interaction factors associated with the student evaluation of teaching at universities, and to provide some insights into improving the student evaluation program based on the results. So, this study consists of three steps that create interaction score, collect student's written comments satisfaction, and analyze an individual professor score. There are a number of limitations to this study. The limitation is that the study was conducted on a narrow sample of the overall student population.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일