$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미세조류와 박테리아의 공생 배양을 이용한 하폐수 고도처리
Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria 원문보기

공업화학 = Applied chemistry for engineering, v.27 no.1, 2016년, pp.1 - 9  

무지타바 굴람 (명지대학교 환경에너지공학과) ,  이기세 (명지대학교 환경에너지공학과)

초록
AI-Helper 아이콘AI-Helper

미세조류와 박테리아의 공배양 시스템은 두 미생물종이 공생적 관계가 있다면 한 배양기에서 BOD와 영양염류의 동시 제거가 가능하다. 이때 영양염류는 미세조류의 바이오매스 성분으로 전환된다. 이 총설은 미세조류와 박테리아의 공생적 혼합배양을 이용한 하폐수처리, 특히 질소와 인의 제거에서의 중요성과 최근의 연구동향을 살펴보았다. 미세조류는 광합성을 통해 산소를 발생시키고 박테리아는 이 산소를 전자수용체로 이용하여 유기물의 산화분해에 활용할 수 있다. 호기성 박테리아가 유기물을 산화할 때 발생되는 $CO_2$는 미세조류의 탄소원으로 섭취되어 탄소동화작용에 사용된다. 미세조류와 박테리아의 공배양은 상호 이익이 될 수도 있고 저해가 될 수도 있으므로 지속적인 영양염류 제거를 위해서는 상호 이익이 되는 공생적 관계가 필수적으로 요구된다. 이를 위해서는 하폐수처리에 사용되는 상용적인 두 미생물 종의 선택이 중요하다.

Abstract AI-Helper 아이콘AI-Helper

The co-culture system of microalgae and bacteria enables simultaneous removal of BOD and nutrients in a single reactor if the pair of microorganisms is symbiotic. In this case, nutrients are converted to biomass constituents of microalgae. This review highlights the importance and recent researches ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • These studies showed the enhancement effects of bacteria on algal growth either by creating more desirable condition for microalgae or by providing some growth promoting substances. The significance of co-culture systems is not just limited to suspended growth reactors.
  • This paper highlights the importance of using the co-culture system of microalgae and bacteria in wastewater treatment. Recent researches on the co-culture systems and their applications were introduced, and the inhibitory/stimulatory effects of microalgae and bacteria in the co-culture system were discussed.
본문요약 정보가 도움이 되었나요?

참고문헌 (70)

  1. S. Aslan and I. K. Kapdan, Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecol. Eng., 28, 64-70 (2006). 

  2. G. Singh and P. B. Thomas, Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor, Bioresour. Technol., 117, 80-85 (2012). 

  3. Y. Z. Peng, X. L. Wang, and B. K. Li, Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the $A^2O$ process, Desalination, 189, 155-164 (2006). 

  4. F. Clarens, E. P. Resurreccion, M. A. White, and L. M. Colosi, Environmental life cycle comparison of algae to other bioenergy feedstocks, Environ. Sci. Technol., 44, 1813-1819 (2010). 

  5. Z. Guo and Y. W. Tong, The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions, J. Appl. Phycol., 26, 1483-1492 (2013). 

  6. T. Cai, S. Y. Park, and Y. Li, Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renew. Sustain. Energy Rev., 19, 360-369 (2013). 

  7. P. J. He, B. Mao, F. Lu, L. M. Shao, D. J. Lee, and J. S. Chang, The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters, Bioresour. Technol., 146, 562-568 (2013). 

  8. R. Marin, L. G. M. Espinosa, and T. Stephenson, Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, Bioresour. Technol., 101, 58-64 (2010). 

  9. R. Munoz and B. Guieysse, Algal-bacterial processes for the treatment of hazardous contaminants: A review, Water Res., 40, 2799-2815 (2006). 

  10. F. Gonzalez, B. M. Salces, and M. C. G. Gonzalez, Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry, Bioresour. Technol., 102, 960-966 (2011). 

  11. Z. Liang, Y. Liu, F. Ge, Y. Xu, N. Tao, F. Peng, and M. Wong, Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis, Chemosphere, 92, 1383-1389 (2013). 

  12. L. E. Gonzalez and Y. Bashan, Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense, Appl. Environ. Microbiol., 66, 1527-1531 (2000). 

  13. L. E. de-Bashan, H. Antoun, and Y. Bashan, Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense, FEMS Microbiol. Ecol., 54, 197-203 (2005). 

  14. Vasseur, G. Bougaran, M. Garnier, J. Hamelin, C. Leboulanger, M. L. Chevanton, B. Mostajir, B. Sialve, J. P. Steyer, and E. Fouilland, Carbon conversion efficiency and population dynamics of a marine algae-bacteria consortium growing on simplified synthetic digestate: First step in a bioprocess coupling algal production and anaerobic digestion, Bioresour. Technol., 119, 79-87 (2012). 

  15. B. E. Rittmann, Opportunities for renewable bioenergy using microorganisms, Biotechnol. Bioeng., 100, 203-212 (2008). 

  16. V. V. Unnithan, A. Unc, and G. B. Smith, Mini-review: A priori considerations for bacteria-algae interactions in algal biofuel systems receiving municipal wastewaters, Algal. Res., 4, 35-40 (2014). 

  17. Y. Park, K.-W. Je, K. Lee, S.-E. Jung, and T.-J. Choi, Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga, Hydrobiologia, 598, 219-228 (2007). 

  18. S. R. Subashchandrabose, B. Ramakrishnan, M. Megharaj, K. Venkateswarlu, and R. Naidu, Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential, Biotechnol. Adv., 29, 896-907 (2011). 

  19. G. Y. Rhee, Competition between an alga and an aquatic bacterium for phosphate. Limnol. Oceanogr., 17, 505-514 (1972). 

  20. Q. Liang, W. Renjun, Z. Peng, C. Ruinan, Z. Wenli, T. Liuqing, and T. Xuexi, Interaction between Chlorella vulgaris and bacteria: interference and resource competition, Acta Oceanol. Sin., 33, 135-140 (2014). 

  21. R. Delucca and M. D. McCracken, Observations on interactions between naturally-collected bacteria and several species of algae, Hydrobiologia, 55, 71-75 (1977). 

  22. J. Liu, A. J. Lewitus, J. W. Kempton, and S. B. Wilde, The association of algicidal bacteria and raphidophyte blooms in South Carolina brackish detention ponds. Harmful Algae, 7, 184-193 (2008). 

  23. L. A. Krometis, G. W. Characklis, P. N. Drummey, and M. D. Sobsey, Comparison of the presence and partitioning behavior of indicator organisms and Salmonella spp. In an urban watershed, J. Water Health, 08, 44-59 (2010). 

  24. J. Lee, D. H. Cho, R. Ramanan, B. H. Kim, H.-M. Oh, and H. S. Kim, Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris, Bioresour. Technol., 131, 195-201 (2013). 

  25. G. Schumacher, T. Blume, and I. Sekoulov, Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm, Water Sci. Technol., 47, 195-202 (2003). 

  26. F. Ribalet, L. Intertaglia, P. Lebaron, and R. Casotti, Differential effect of three polyunsaturated aldehydes on marine bacterial isolates, Aquat. Toxicol., 86, 249-255 (2008). 

  27. M. DellaGreca, A. Zarrelli, P. Fergola, M. Cerasuolo, A. Pollio, and G. Pinto, Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: Experiments and modelling. J. Chem. Ecol., 36, 339-349 (2010). 

  28. K. Fukami, T. Nishijima, and Y. Ishida, Stimulative and inhibitory effects of bacteria on the growth of microalgae, Hydrobiologia, 358, 185-191 (1997). 

  29. J. J. Cole, Interactions between Bacteria and Algae in Aquatic Ecosystems, Ann. Rev. Ecol. Syst., 13, 291-314 (1982). 

  30. P. Fergola, M. Cerasuolo, A. Pollio, G. Pinto, and M. DellaGreca, Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model, Ecol. Modell., 208, 205-214 (2007). 

  31. M. Danger, C. Oumarou, D. Benest, and G. Lacroix, Bacteria can control stoichiometry and nutrient limitation of phytoplankton, Funct. Ecol., 21, 202-210 (2007). 

  32. V. Lebsky, L. E. Gonzalez-Bashan, and Y. Bashan, Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense, Can. J. Microbiol., 47, 1-8 (2001). 

  33. X. Ma, W. Zhou, Z. Fu, Y. Cheng, M. Min, Y. Liu, Y. Zhang, P. Chen, and R. Ruan, Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system, Bioresour. Technol., 167, 8-13 (2014). 

  34. M. N. Byappanahalli, R. Sawdey, S. Ishii, D. A. Shively, J. A. Ferguson, R. L. Whitman, and M. J. Sadowsky, Seasonal stability of cladophora-associated Salmonella in lake Michigan watersheds, Water Res., 43, 806-814 (2009). 

  35. M. T. Croft, A. D. Lawrence, E. Raux-Deery, M. J. Warren, and A. G. Smith, Algae acquire vitamin B12 through a symbiotic relationship with bacteria, Nature, 438, 90-93 (2005). 

  36. C. Bouteleux, S. Saby, D. Tozza, J. Cavard, V. Lahoussine, P. Hartemann, and L. Mathieu, Escherichia coli behavior in the presence of organic matter released by algae exposed to water treatment chemicals, Appl. Environ. Microbiol., 71, 734-740 (2005). 

  37. G. M. Wolfaardt, J. R. Lawrence, R. D. Robarts, and D. E. Caldwell, The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium, Can. J. Microbiol., 40, 331-340 (1994). 

  38. H. Mazur, A. Konop, and R. Synak, Indole-3-acetic acid in the culture medium of two axenic green microalgae. J. Appl. Phycol., 13, 35-42 (2001). 

  39. J.-L. Mouget, A. Dakhama, M. C. Lavoie, and J. Noue, Algal growth enhancement by bacteria: Is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol., 18, 35-43 (1995). 

  40. Y. Zhang, H. Su, Y. Zhong, C. Zhang, Z. Shen, W. Sang, G. Yan, and X. Zhou, The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products, Water Res., 46, 5509-5516 (2012). 

  41. J. N. Rooney-Verga, M. W. Giewat, M. C. Savin, S. Sood, M. LeGresley, and J. L. Martin, Links between phytoplankton and bacterial community dynamics in a coastal marine environment, Microbiol. Ecol., 49, 163-175 (2005). 

  42. J.-P. Hernandez, L. E. de-Bashan, D. J. Rodriguez, Y. Rodriguez, and Y. Bashan, Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils, Eur. J. Soil Biol., 45, 88-93 (2009). 

  43. L. E. de-Bashan, M. Moreno, J. P. Hernandez, and Y. Bashan, Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense, Water Res., 36, 2941-2948 (2002). 

  44. C. E. Riquelme, Interaction between Microalgae and Bacteria in Coastal Seawater. PhD Dissertation, Kyoto University, Japan (1988). 

  45. J. Du, S. Cheng, C. Shao, Y. Lv, G. Pu, X. Ma, Y. Jia, and X. Tian, Growth stimulation of Microcystis aeruginosa by a bacterium from hyper-eutrophic water (Taihu Lake, China), Aquat. Ecol., 47, 303-313 (2013). 

  46. I. Suminto and K. Hirayama, Effects of bacterial coexistence on the growth of a marine diatom Chaetoceros gracilis. Fish. Sci., 62, 40-43 (1996). 

  47. L. E. de-Bashan and Y. Bashan, Immobilized microalgae for removing pollutants: Review of practical aspects, Bioresour. Technol., 101, 1611-1627 (2010). 

  48. R. M. M. Abed, Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons, Int. Biodeterior. Biodegradation, 64, 58-64 (2010). 

  49. F. G. Acien, C. V. Gonzalez, J. M. Fernandez, M. G. Gonzalez, J. Moreno, E. Sierra, M. G. Guerrero, and E. Molina, Removal of $CO_2$ from flue gases coupled to the photosynthetic generation of organic matter by cyanobacteria, Nat. Biotechnol., 25, S265 (2009). 

  50. R. Munoz, M. Jacinto, B. Guieysse, and B. Mattiasson, Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Appl. Microbiol. Biotechnol., 67, 699-707 (2005). 

  51. G. Tchobanoglous, F. L. Burton, and H. D. Stensel, Wastewater Engineering: Treatment and Reuse. McGraw-Hill, New York, NY (2003). 

  52. I. de Godos, V. A. Vargas, S. Blanco, M. C. Gonzalez, R. Soto, P. A.-E Garcia, E. Becares, and R. Munoz, A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation, Bioresour. Technol., 101, 5150-5158 (2010). 

  53. R. O. Canizares-Villanueva, Heavy metals biosorption by using microbial biomass, Rev. Latinoam. Microbiol., 42, 131-143 (2000). 

  54. W. Mulbry, E. K. Westhead, C. Pizarro, and L. Sikora, Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer, Bioresour. Technol., 96, 451-458 (2005). 

  55. M. Medina and U. Neis, Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance, Water Sci. Technol., 55, 165-171 (2007). 

  56. M. A. Aziz and W. J. Ng, Industrial wastewater treatment using an activated algae-reactor, Water Sci. Technol., 28, 71-76 (1993). 

  57. C. J. Ogbonnna, H. Yoshizawa1, and H. Tanaka, Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms, J. Appl. Phycol., 12, 277-284 (2000). 

  58. C. S. Lee, S.-A. Lee, S.-R. Ko, H.-M. Oh, and C.-Y. Ahn, Effects of photoperiod on nutrient removal, biomass production, and algal- bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater, Water Res., 68, 680-691 (2015). 

  59. X. Zhao, Y. Zhou, S. Huang, D. Qiu, L. Schideman, X. Chai, and Y. Zhao, Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production, Bioresour. Technol., 156, 322-328 (2014). 

  60. C. Gonzalez, J. Marciniak, S. Villaverde, C. Leon, P. A. Garcia, and R. Munoz, Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia, Water Sci. Technol., 58, 95-102 (2008). 

  61. H.-Y. Ren, B.-F. Liu, F. Kong, L. Zhao, and N. Ren, Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal, Water Res., 85, 404-412 (2015). 

  62. G. Mujtaba, M. Rizwan, and K. Lee, Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida, Biotechnol. Bioprocess Eng., 20(6), 1114-1122 (2015). 

  63. H. Kawai, V. M. Grieco, and P. Jureidini, A study of the treatability of pollutants in high rate photosynthetic ponds and the utilization of the proteic potential of algae which proliferate in the ponds, Environ. Technol. Lett., 5, 505-515 (1984). 

  64. N. Mallick and L. C. Rai, Removal of inorganic ions from wastewaters by immobilized microalgae, World J. Microbiol. Biotechnol., 10, 439-443 (1994). 

  65. E. Zhang, B. Wang, Q. Wang, S. Zhang, and B. Zhao, Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment, Bioresour. Technol., 99, 3787-3793 (2008). 

  66. K. Liu, J. Li, H. Qiao, A. Lin, and G. Wang, Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour. Technol., 114, 26-32 (2012). 

  67. E. Posadas, P. A. G. Encina, A. Soltau, A. Dominguez, I. Diaz, and R. Munoz, Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors, Bioresour. Technol., 139, 50-58 (2013). 

  68. N. C. Boelee, H. Temmink, M. Janssen, C. J. N. Buisman, and R. H. Wijffels, Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms, Water Res., 45, 5925-5933 (2011). 

  69. F. Lananan, S. H. A. Hamid, W. N. S. Din, N. Ali, H. Khatoon, A. Jusoh, and A. Endut, Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.), Int. Biodeter. Biodegradation, 95, 127-134 (2014). 

  70. D. Hernandez, B. Riano, M. Coca, and M. C. G. Gonzalez, Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass, Bioresour. Technol., 135, 598-603 (2013). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로