$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Structural and Kinetic Characteristics of 1,4-Dioxane-Degrading Bacterial Consortia Containing the Phylum TM7 원문보기

Journal of microbiology and biotechnology, v.26 no.11, 2016년, pp.1951 - 1964  

Nam, Ji-Hyun (Department of Environmental Engineering and Energy, Myongji University) ,  Ventura, Jey-R S. (Department of Engineering Science, College of Engineering and Agro-Industrial Technology, University of the Philippines) ,  Yeom, Ick Tae (Department of Civil and Environmental Engineering, Sungkyunkwan University) ,  Lee, Yongwoo (Department of Chemistry and Applied Chemistry, College of Science and Technology, Hanyang University) ,  Jahng, Deokjin (Department of Environmental Engineering and Energy, Myongji University)

Abstract AI-Helper 아이콘AI-Helper

1,4-Dioxane-degrading bacterial consortia were enriched from forest soil (FS) and activated sludge (AS) using a defined medium containing 1,4-dioxane as the sole carbon source. These two enrichments cultures appeared to have inducible tetrahydrofuran/dioxane and propane degradation enzymes. Accordin...

주제어

참고문헌 (51)

  1. Alonso-Gutierrez J, Figueras A, Albaiges J, Jimenez N, Vinas M, Solanas AM, Novoa B. 2009. Bacterial communities from shoreline environments (Costa da Morte, Northwestern Spain) affected by the Prestige oil spill. Appl. Environ. Microbiol. 75: 3407-3418. 

  2. Bernhardt D, Diekmann H. 1991. Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain. Appl. Microbiol. Biotechnol. 36: 120-123. 

  3. Burback BL, Perry JJ. 1993. Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl. Environ. Microbiol. 59: 1025-1029. 

  4. Coleman HM, Vimonses V, Leslie G, Amal R. 2007. Degradation of 1,4-dioxane in water using $TiO_2$ based photocatalytic and $H_2O_2$ /UV processes. J. Hazard. Mater. 146: 496-501. 

  5. Coleman NV, Bui NB, Holmes AJ. 2006. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ. Microbiol. 8: 1228-1239. 

  6. Connon SA, Tovanabootr A, Dolan M, Vergin K, Giovannoni SJ, Semprini L. 2005. Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethenecontaminated groundwater. Environ. Microbiol. 7: 165-178. 

  7. Ding GC, Heuer H, Smalla K. 2012. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front. Microbiol. 3: Article 290. 

  8. Dinis JM, Barton DE, Ghadiri J, Surendar D, Reddy K, Velasquez F, et al. 2011. In search of an uncultured humanassociated TM7 bacterium in the environment. PLoS One 6: e21280. 

  9. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. 

  10. Findlay M, Smoler D, Fogel S. 2007. Dioxane-degrading propanotrophs for in-situ remediation. In: Battelle Conference: In Situ and On-Site Bioremediation Symposium, Baltimore, Maryland, USA. 

  11. Gedalanga PB, Pornwongthong P, Mora R, Chiang SY, Baldwin B, Ogles D, Mahendra S. 2014. Identification of biomarker genes to predict biodegradation of 1,4-dioxane. Appl. Environ. Microbiol. 80: 3209-3218. 

  12. Grady CPL, Sock SM, Cowan RM. 1997. Biotreatability kinetics. Biotechnology in the Sustainable Environment. In Sayler GS, Sanseverino J, Davis KL (eds.). Plenum Press, New York, USA. 

  13. Gomez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. 2007. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J. Bacteriol. 189: 5705-5715. 

  14. Garrity GM, Brenner DJ, Krieg NR, Staley JT. 2005. Bergey's Manual of Systematic Bacteriology; Volume Two: The Proteobacteria; Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, USA. 

  15. Han JS, So MH, Kim CG. 2009. Optimization of biological wastewater treatment conditions for 1,4-dioxane decomposition in polyester manufacturing processes. Water Sci. Technol. 59: 995-1002. 

  16. Hanada A, Kurogi T, Giang NM, Yamada T, Kamimoto Y, Kiso Y, Hiraishi A. 2014. Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors. Microbes Environ. 29: 353-362. 

  17. Hugenholtz P, Tyson GW, Webb RI, Wagner AM, Blackall LL. 2001. Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl. Environ. Microbiol. 67: 411-419. 

  18. Kampfer P, Kohlweyer U, Thiemer B, Andreesen JR. 2006. Pseudonocardia tetrahydrofuranoxydans sp. nov. Int. J. Syst. Evol. Microbiol. 56: 1535-1538. 

  19. Kim YM, Jeon JR, Murugesan K, Kim EJ, Chang YS. 2009. Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. Biodegradation 20: 511-519. 

  20. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. 

  21. Kohlweyer U, Thiemer B, Schrader T, Andreesen JR. 2000. Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1. FEMS Microbiol. Lett. 186: 301-306. 

  22. Krieg NR, Parte A, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, et al. 2011. Bergey's Manual of Systematic Bacteriology: Volume 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Springer Science & Business Media. 

  23. Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E, Goodfellow M (eds.). Nucleic Acid Techniques In Bacterial Systematics. John Wiley and Sons, Chichester, UK. 

  24. Laplante K, Sebastien B, Derome N. 2013. Parallel changes of taxonomic interaction networks in lacustrine bacterial communities induced by a polymetallic perturbation. Evol. Appl. 6: 643-659. 

  25. Leahy JG, Batchelor PJ, Morcomb SM. 2003. Evolution of the soluble diiron monooxygenases. FEMS Microbiol. Rev. 27: 449-479. 

  26. Li M, Mathieu J, Yang Y, Fiorenza S, Deng Y, He Z, et al. 2013. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4- dioxane. Environ. Sci. Technol. 47: 9950-9958. 

  27. Lippincott D, Streger SH, Schaefer CE, Hinkle J, Stormo J, Steffan RJ. 2015. Bioaugmentation and propane biosparging for In Situ Biodegradation Of 1,4-dioxane. Ground Water Monit. Remediat. 35: 81-92. 

  28. Liz JAZE, Jan-Roblero J, de la Serna JZD, de Leon AVP, Hernandez-Rodriguez C. 2009. Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum. World J. Microbiol. Biotechnol. 25: 165-170. 

  29. Luo C, Xie S, Sun W, Li X, Cupples AM. 2009. Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl. Environ. Microbiol. 75: 4644-4647. 

  30. Mahendra S, Alvarez-Cohen L. 2005. Pseudonocardia dioxanivorans sp nov., a novel actinomycete that grows on 1,4-dioxane. Int. J. Syst. Evol. Microbiol. 55: 593-598. 

  31. Mahendra S, Alvarez-Cohen L. 2006. Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ. Sci. Technol. 40: 5435-5442. 

  32. Mohr TKG. 2001. Solvent Stabilizers. Santa Clara Valley Water District, San Jose, California, USA. 

  33. Mohr TKG, Stickney JA, DiGuiseppi WH. 2010. Environmental Investigation and Remediation: 1,4-Dioxane and Other Solvent Stabilizers. CRC Press, Boca Raton, Florida, USA. 

  34. Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling o f complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. 

  35. Nakamiya K, Hashimoto S, Ito H, Edmonds JS, Morita M. 2005. Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus. Appl. Environ. Microbiol. 71: 1254-1258. 

  36. Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York, USA. 

  37. Parales RE, Adamus JE, White N, May HD. 1994. Degradation of 1,4-dioxane by an actinomycete in pure culture. Appl. Environ. Microbiol. 60: 4527-4530. 

  38. Popoola AV. 1992. Mechanism of reaction involving the formation of dioxane byproduct during the production of poly(ethylene terephthalate). J. Appl. Polym. Sci. 43: 1875-1877. 

  39. Roy D, Anagnostu G, Chaphalkar P. 1994. Biodegradation of dioxane and diglyme in industrial waste. J. Environ. Sci. Health A Environ. Sci. Eng. 29: 129-147. 

  40. Sei K, Kakinoki T, Inoue D, Soda S, Fujita M, Ike M. 2010. Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples. Biodegradation 21: 585-591. 

  41. Sei K, Miyagaki K, Kakinoki T, Fukugasako K, Inoue D, Ike M. 2013. Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source. Biodegradation 24: 665-674. 

  42. So MH, Han JS, Han TH, Seo JW, Kim CG. 2009. Decomposition of 1,4-dioxane by photo-Fenton oxidation coupled with activated sludge in a polyester manufacturing process. Water Sci. Technol. 59: 1003-1009. 

  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. 

  44. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. 

  45. Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ. 2006. Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478. Appl. Environ. Microbiol. 72: 5218-5224. 

  46. Winsley TJ, Snape I, McKinlay J, Stark J, van Dorst JM, Ji M, et al. 2014. The ecological controls on the prevalence of candidate division TM7 in polar regions. Front. Microbiol. 5: Article 345. 

  47. Xie S , Sun W, Luo C , Cupples AM. 2011. Novel a erobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation 22: 71-81. 

  48. Zenker MJ, Borden RC, Barlaz MA. 2000. Mineralization of 1,4-dioxane in the presence of a structural analog. Biodegradation 11: 239-246. 

  49. Zenker MJ, Borden RC, Barlaz MA. 2002. Modeling cometabolism of cyclic ethers. Environ. Eng. Sci. 19: 215-228. 

  50. Zenker MJ, Borden RC, Barlaz MA. 2003. Occurrence and treatment of 1,4-dioxane in aqueous environments. Environ. Eng. Sci. 20: 423-432. 

  51. Zenker MJ, Borden RC, Barlaz MA. 2004. Biodegradation of 1,4-dioxane using trickling filter. J. Environ. Eng. 130: 926-931. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로