$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A unified solution for vibration analysis of plates with general structural stress distributions 원문보기

International journal of naval architecture and ocean engineering, v.8 no.6, 2016년, pp.615 - 630  

Yang, Nian (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ,  Chen, Lu-Yun (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ,  Yi, Hong (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ,  Liu, Yong (Ship Scientific Research Center of China)

Abstract AI-Helper 아이콘AI-Helper

Complex stress distributions often exist in ocean engineering structures. This stress influences structural vibrations. Finite Element Methods exhibit some shortcomings for solving non-uniform stress problems, such as an unclear physical interpretation, complicated operation, and large number of com...

주제어

참고문헌 (39)

  1. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A., Tounsi, A., 2015. Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53 (6), 1143-1165. 

  2. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R., Anwar Beg, O., 2014. An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B 60, 274-283. 

  3. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A., Tounsi, A., 2016. Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 38, 265-275. 

  4. Bennoun, M., Houari, M.S.A., Tounsi, A., 2016. A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech. Adv. Mater. Struct. 23 (4), 423-431 

  5. Bokaian, A., 2004. Thermal expansion of pipe-in-pipe systems. Mar. Struct. 17, 475-500. 

  6. Bouderba, B., Houari, M.S.A., Tounsi, A., 2013. Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations. Steel Compos. Struct. 14 (1), 85-104. 

  7. Bourada, M., Kaci, A., Houari, M.S.A., Tounsi, A., 2015. A new simple shear and normal deformations theory for functionally graded beams. Steel Compos. Struct. 18 (2), 409-423. 

  8. Brunelle, E.J., Robertson, S.R., 1976. Vibrations of an initially stressed thick plate. J. Sound Vib. 45 (3), 405-416. 

  9. Cao, Z., 1989. Vibration Theory of Plates and Shells. Chinese Railway Press. 

  10. Chen, L., Li, L., Zhang, Y., 2014. Characteristics analysis of structuralacoustic of cylindrical shell with prestress in local areas. J. Shanghai Jiao Tong Univ. 48 (8), 1084-1089. 

  11. Cho, D.S., Kim, B.H., Kim, J.H., Vladimir, N., Choi, T.M., 2016. Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries. Int. J. Nav. Archit. Ocean Eng. 8 (2), 117-126. 

  12. Dong, P.A., 2001. Structural stress definition and numerical implementation for fatigue analysis of welded joints. Int. J. Fatigue 23 (10), 865-876. 

  13. Doong, J.L., 1987. Vibration and stability of an initially stressed thick plate according to a high-order deformation theory. J. Sound Vib. 113 (3), 425-440. 

  14. Fuller, C.R., Fahy, F.J., 1982. Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid. J. Sound Vib. 81 (4), 501-518. 

  15. Gannon, L., Liu, Y., Pegg, N., et al., 2012. Effect of welding-induced residual stress and distortion on ship hull girder ultimate strength. Mar. Struct. 28 (1), 25-49. 

  16. Gao, Y., Su, Z., Jiao, Q., Tang, G., 2002. Influence on the natural frequency of component with residual stress. J. Mech. Strength 24 (2), 289-292. 

  17. Gao, Y., Tang, G., Wan, W., 2014. The calculations of natural frequency of quadrate thin plate with welding residual stress. J. Vib. Shock 33 (9), 165-167. 

  18. Hamidi, A., Houari, M.S.A., Mahmoud, S.R., Tounsi, A., 2015. A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates. Steel Compos. Struct. 18 (1), 235-253. 

  19. He, Z., 2001. Structural Vibration and Radiation. Harbin Engineering University Press. 

  20. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A., Adda Bedia, E.A., 2014. A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. ASCE J. Eng. Mech. 140, 374-383. 

  21. Khan, I., Zhang, S., 2011. Effects of welding-induced residual stress on ultimate strength of plates and stiffened panels. Ships Offshore Struct. 6 (4), 297-309. 

  22. Lee, C.K., Chiew, S.P., et al., 2013. 3D residual stress modelling of welded high strength steel plate-to-plate joints. J. Constr. Steel Res. 84, 94-104. 

  23. Li, L., Wan, Z., Pan, G., Wang, Z., 2010. Review on welding residual stresses of submarine structures. Ship Sci. Technol. 32 (10), 130-134. 

  24. Liu, Z., 2009. Characteristics of Power Flow and Sound Radiation in Cylindrical Shell-fluid System Considering Hydrostatic Pressure. PhD Dissertation. Huazhong University of Science & Technology, Wuhan, China. 

  25. Liu, Z., Li, T., Zhu, X., et al., 2010. The effect of hydrostatic pressure fields on the dispersion characteristics of fluid-shell coupled system. J. Mar. Sci. Appl. 9 (2), 129-136. 

  26. Liu, Z., Li, T., Zhu, X., et al., 2011. The effect of hydrostatic pressure on input power flow in submerged ring-stiffened cylindrical shells. J. Ship Mech. 15 (3), 301-312. 

  27. Mahi, A., Adda Bedia, E.A., Tounsi, A., 2015. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39, 2489-2508. 

  28. Meziane, Ait Amar, et al., 2014. An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J. Sandw. Struct. Mater. 16 (3), 293-318. 

  29. Niemi, E., 1995. Stress Determination for Fatigue Analysis of Welded Component. Woodhead Publishing. 

  30. Paik, J.K., Sohn, J.M., 2012. Effects of welding residual stresses on high tensile steel plate ultimate strength: nonlinear finite element method investigations. J. Offshore Mech. Arct. Eng. 134 (2), 021401. 

  31. Radaj, D., 2012. Heat Effects of Welding: Temperature Field, Residual Stress. Distortion. Springer Science & Business Media. 

  32. Senjanovic, I., Vladimir, N., Cho, D.S., 2015. A new finite element formulation for vibration analysis of thick plates. Int. J. Nav. Archit. Ocean Eng. 7 (2), 324-345. 

  33. Senjanovic, I., Vladimir, N., Tomic, M., 2016. On new first-order shear deformation plate theories. Mech. Res. Commun. 73, 31-38. 

  34. Tounsi, A., Houari, M.S.A., Benyoucef, S., Adda Bedia, E.A., 2013. A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 24, 209-220. 

  35. Yahnioglu, N., 2007. On the stress distribution in a prestretched simply supported strip containing two neighboring circular holes under forced vibration. Int. Appl. Mech. 43 (10), 1179-1183. 

  36. Zhang, X.M., 2002. Frequency analysis of submerged cylindrical shells with the wave propagation approach. Int. J. Mech. Sci. 44 (7), 1259-1273. 

  37. Zhang, Y., Gorman, D., Reese, J., 2001a. A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluid. J. Sound Vib. 245 (1), 93-112. 

  38. Zhang, X.M., Liu, G.R., Lam, K.Y., 2001b. Coupled vibration analysis of fluid-filled cylindrical shells using the wave propagation approach. Appl. Acoust. 62 (3), 229-243. 

  39. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A., Anwar Beg, O., 2014. Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp. Sci. Technol. 34, 24-34. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로