$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

민통선 둠벙의 수서곤충과 식물 군집에 대한 수환경 특성의 영향
The influence of water characteristics on the aquatic insect and plant assemblage in small irrigation ponds in Civilian Control Zone, Korea 원문보기

한국습지학회지 = Journal of wetlands research, v.18 no.4, 2016년, pp.331 - 341  

김재현 (서울대학교 생물교육과) ,  정현용 (DMZ생태연구소) ,  김승호 (DMZ생태연구소) ,  김재근 (서울대학교 생물교육과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 둠벙의 수서곤충군집과 식물 군집에 영향을 주는 수환경 특성을 확인하고자 민통선에 존재하는 5개 유형 16개 둠벙을 선택하여 물의 화학적 특성과 둠벙과 주변 환경과의 연결 특성을 조사하였다. 둠벙의 유형으로는 괸물, 괸물-물흐름, 샘통, 괸물-샘통 그리고 물흐름-샘통형을 사용하였다. 연중 이온의 농도 변화는 괸물형 둠벙에서 가장 작았고 샘통형 둠벙에서 가장 컸다. 음이온 농도가 가장 높은 곳은 괸물형 둠벙이었으며, 양이온 농도가 가장 높은 곳은 물흐름-샘통형 둠벙이었다. 연구 장소에서 발견된 식물은 228종이었으며, 이중 습지 식물이 63종이었다. 수서곤충은 95종이 발견되었다. 확인된 희귀식물은 6종이었고, 희귀수서곤충은 4종이었다. 괸물-샘통형 둠벙에서 종풍부도가 가장 높았다. 둠벙의 크기와 종풍부도는 상관관계가 없었으며, 다변량 통계를 통해 분석한 결과 둠벙 유형별로 생물군집에서 차이가 나는 것으로 나타났다. 본 연구를 통해 둠벙에서 수환경 변화와 주변 환경과 둠벙의 연결성이 생물군집에 영향을 주는 것으로 확인되었으며, 둠벙은 담수생태계로서 이질성을 높여 농업지역의 생물다양성을 높이는데 기여함을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

A small irrigation pond for a rice paddy field is a very important refuge for aquatic insects and plants. To reveal environmental factors determining species composition of aquatic insect and plant communities, we analyzed water chemistry and connection between pond and surrounding in five types of ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The goal of this study was to investigate whether biodiversity and species assemblages were associated with water chemical annual fluctuation. Our results show that water chemical annual fluctuation might influenced on plant and aquatic insect communities in ponds.
본문요약 정보가 도움이 되었나요?

참고문헌 (64)

  1. Angelibert, S, Marty, P, Cereghino, R and Giani, N (2004). Seasonal variations in the physical and chemical characteristics of ponds: implications for biodiversity conservation, Aquatic Conservation: Marine and Freshwater Ecosystems, 14 (5), pp. 439-456. 

  2. Benton, TG, Vickery, JA and Wilson, JD (2003). Farmland biodiversity: is habitat heterogeneity the key Trends in Ecology & Evolution, 18 (4), pp. 182-188. 

  3. Cereghino, R, Biggs, J, Oertli, B and Declerck, S (2008). The ecology of European ponds: defining the characteristics of a neglected freshwater habitat, Hydrobiologia, 597 (1), pp. 1-6. 

  4. Cereghino, R, Boix, D, Cauchie, H-M, Martens, K and Oertli, B (2013). The ecological role of ponds in a changing world, Hydrobiologia, 723 (1), pp. 1-6. 

  5. Choe, LJ, Han, MS, Kim, M, Cho, KJ, Kang, KK, Na, YE and Kim, MH (2013). Characteristics communities structure of benthic macroinvertebrates at irrigation ponds, within paddy field, The Korean Society of Enviromental Agriculture, 32 (4), pp. 304-314. 

  6. Clarke, KR (1993). Non-parametric multivariate analyses of changes in community structure, Australian J. of Ecology, 18 (1), pp. 117-143. 

  7. Collinson, NH, Biggs, J, Corfield, A, Hodson, MJ, Walker, D, Whitfield, M and Williams, PJ (1995). Temporary and permanent ponds: An assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities, Biological Conservation, 74 (2), pp. 125-133. 

  8. Corbet, P (1962). A Biology of Dragonflies. Witherby, London, pp. 247. 

  9. Craft, C, Krull, K and Graham, S (2007). Ecological indicators of nutrient enrichment, freshwater wetlands, Midwestern United States (US), Ecological Indicators, 7 (4), pp. 733-750. 

  10. Davies, B, Biggs, J, Williams, P, Whitfield, M, Nicolet, P, Sear, D, Bray, S and Maund, S (2008). Comparative biodiversity of aquatic habitats in the European agricultural landscape, Agriculture, Ecosystems & Environment, 125 (1-4), pp. 1-8. 

  11. Davis, SN, Thompson, GM, Bentley, HW and Stiles, G (1980). Ground-water tracers - A short review, Ground Water, 18 (1), pp. 14-23. 

  12. Declerck, S, De Bie, T, Ercken, D, Hampel, H, Schrijvers, S, Van Wichelen, J, Gillard, V, Mandiki, R, Losson, B and Bauwens, D (2006). Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales, Biological Conservation, 131 (4), pp. 523-532. 

  13. DMZ Ecology Research Institute (DERI). (2013). 2013 DMZ Ecological survey report, DMZ Ecology Research Institute. [Korean Literature] 

  14. Drexler, JZ and Bedford, BL (2002). Pathways of nutrient loading and impacts on plant diversity in a New York peatland, Wetlands, 22 (2), pp. 263-281. 

  15. Frodge, JD, Thomas, G and Pauley, G (1990). Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes, Aquatic Botany, 38 (2), pp. 231-248. 

  16. Froneman, A, Mangnall, M, Little, R and Crowe, T (2001). Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa, Biodiversity & Conservation, 10 (2), pp. 251-270. 

  17. Galbraith, H (1988). Effects of agriculture on the breeding ecology of lapwings Vanellus vanellus, J. of Applied Ecology, pp. 487-503. 

  18. Gioria, M, Schaffers, A, Bacaro, G and Feehan, J (2010). The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group, Biological Conservation, 143 (5), pp. 1125-1133. 

  19. Green, J (1970). Freshwater ecology in the Mato Grosso, Central Brazil I. The conductivity of some natural waters, J. of Natural History, 4 (2), pp. 289-299. 

  20. Hamerlik, L, Svitok, M, Novikmec, M, Ocadlik, M and Bitusik, P (2013). Local, among-site, and regional diversity patterns of benthic macroinvertebrates in high altitude waterbodies: do ponds differ from lakes Hydrobiologia, 723 (1), pp. 41-52. 

  21. Hannigan, E and Kelly-Quinn, M (2012). Composition and structure of macroinvertebrate communities in contrasting open-water habitats in Irish peatlands: implications for biodiversity conservation, Hydrobiologia, 692 (1), pp. 19-28. 

  22. IUCN, (2001). 2001 IUCN Red List categories and criteria: version 3.1, The IUCN Species Survival Commission. 

  23. Jeffries, MJ (1998). Pond macrophyte assemblages, biodisparity and spatial distribution of ponds in the Northumberland coastal plain, UK, Aquatic Conservation: Marine and Freshwater Ecosystems, 8 (5), pp. 657-667. 

  24. Johnston, CA and Brown, TN (2013). Water chemistry distinguishes wetland plant communities of the Great Lakes coast, Aquatic Botany, 104, pp. 111-120. 

  25. Jung, K (2007). Odonata of Korea. Ilgongyuk-sa, Seoul. [Korean Literature] 

  26. Kaenel, BR, Buehrer, H and Uehlinger, U (2000). Effects of aquatic plant management on stream metabolism and oxygen balance in streams, Freshwater Biology, 45 (1), pp. 85-95. 

  27. Kamphake, L, Hannah, S and Cohen, J (1967). Automated analysis for nitrate by hydrazine reduction, Water Research, 1 (3), pp. 205-216. 

  28. Kibriya, S and Iwan Jones, J (2007). Nutrient availability and the carnivorous habit in Utricularia vulgaris, Freshwater Biology, 52 (3), pp. 500-509. 

  29. Kim, JO (2012). A study on ecological characteristics of small irrigation pond (Dum-bung) in paddy field. Ph.D. Thesis, Kangwon National University. [Korean Literature] 

  30. Kim, KG and Cho, DG (2005). Status and ecological resource value of the Republic of Korea's De-militarized Zone, Landscape and Ecological Engineering, 1 (1), pp. 3-15. 

  31. Kim, SH, Kim, JH and Kim, JG (2011). Classification of small irrigation ponds in western Civilian Control Zone in Korea, Korean Wetlands Society, 13 (2), pp. 275-289. [Korean Literature] 

  32. Kim, SH, Kim, JH and Kim, JG (2011). Water characteristics and similarity analysis of wetland plant communities in 4 types of small irrigation ponds in western Civilian Control Zone in Korea, Korean Wetlands Society, 13 (3), pp. 581-591. [Korean Literature] 

  33. Koleff, P, Gaston, KJ and Lennon, JJ (2003). Measuring beta diversity for presence-absence data, J. of Animal Ecology, 72 (3), pp. 367-382. 

  34. Lambeck, RJ (1997). Focal species: a multi-species umbrella for nature conservation, Conservation Biology, 11 (4), pp. 849-856. 

  35. Lee, DW (2004). Ecological implications of landscape elements in traditional Korea villages, Seoul National University Press: Seoul. [Korean Literature] 

  36. Lee, SD (2013). Distribution and abundance of wintering raptors in the Korean peninsula, J. of Ecology & Environment, 36 (4), pp. 211-216. 

  37. Moller, TR and Rordam, CP (1985). Species numbers of vascular plants in relation to area, isolation and age of ponds in Denmark, Oikos, 45 (1), pp. 8-16. 

  38. Magurran, AE (1988). Ecological diversity and its measurement, Springer. 

  39. Miranda, L and Hodges, K (2000). Role of aquatic vegetation coverage on hypoxia and sunfish abundance in bays of a eutrophic reservoir, Hydrobiologia, 427 (1), pp. 51-57. 

  40. Mitsch, WJ and Gosselink, JG (2000). Wetlands, Wiley, New York. 

  41. Murphy, J and Riley, J (1962). A modified single solution method for the determination of phosphate in natural waters, Analytica Chimica Acta, 27, pp. 31-36. 

  42. National Institute of Biological Resources (NIBR) (2012). Korean Red List of Threatened Species: Mammals, Birds, Reptiles, Amphibians, Fishes and Vascular Plants, National Institute of Biological Resources. [Korean Literature] 

  43. National Institute of Biological Resources (NIBR) (2013). Red Data Book of Endangered Insects in Korea III, National Institute of Biological Resources 

  44. National Institute of Environmental Research and National Wetland Center (NIER and NWC). (2013). 2013 Wetland Protection Area Ecological Scrutiny, National Institute of Environmental Research. 

  45. Nicolet, P, Biggs, J, Fox, G, Hodson, MJ, Reynolds, C, Whitfield, M and Williams, P (2004). The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales, Biological Conservation, 120 (2), pp. 261-278. 

  46. Oertli, B, Joye, DA, Castella, E, Juge, R, Cambin, D and Lachavanne, JB (2002). Does size matter The relationship between pond area and biodiversity, Biological Conservation, 104 (1), pp. 59-70. 

  47. Oertli, B, Biggs, J, Cereghino, R, Grillas, P, Joly, P and Lachavanne, JB (2005). Conservation and monitoring of pond biodiversity: introduction, Aquatic Conservation: Marine and Freshwater Ecosystems, 15 (6), pp. 535-540. 

  48. Paju-si Gunne local office (2011). A Pumping Station for Water Supply Situation, Paju-si Gunne local office. [Korean Literature] 

  49. Park, EJ, Nam, MA and Park, MS (2012). DMZ Eco Peace Villages: Basic Survey and Development Strategies, Gyeonggi Research Institut. [Korean Literature] 

  50. Pip, E (1989). Water temperature and freshwater macrophyte distribution, Aquatic Botany, 34 (4), pp. 367-373. 

  51. Rolon, AS and Maltchik, L (2006). Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil, Hydrobiologia, 556 (1), pp. 221-231. 

  52. Sanchez-Zapata, JA, Anadon, JD, Carrete, M, Gimenez, A, Navarro, J, Villacorta, C and Botella, F (2005). Breeding waterbirds in relation to artificial pond attributes: implications for the design of irrigation facilities, Biodiversity & Conservation, 14 (7), pp. 1627-1639. 

  53. Sass, LL, Bozek, MA, Hauxwell, JA, Wagner, K and Knight, S (2010). Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, USA, Aquatic Botany, 93 (1), pp. 1-8. 

  54. Scheffer, M, Van Geest, GJ, Zimmer, K, Jeppesen, E, Sondergaard, M, Butler, MG, Hanson, MA, Declerck, S and De Meester, L (2006). Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds, Oikos, 112 (1), pp. 227-231. 

  55. Schindler, M, Fesl, C and Chovanec, A (2003). Dragonfly associations (Insecta: Odonata) in relation to habitat variables: a multivariate approach, Hydrobiologia, 497 (1-3), pp. 169-180. 

  56. Solorzano, L (1969). Determination of ammonia in natural waters by the phenolhypochlorite method, Limnology and Oceanography, 14 (5), pp. 799-801. 

  57. Suurkuukka, H, Meissner, KK and Muotka, T (2012). Species turnover in lake littorals: spatial and temporal variation of benthic macroinvertebrate diversity and community composition, Diversity and Distributions, 18 (9), pp. 931-941. 

  58. Ter Braak, C and Smilauer, P (2002). Canoco for Windows version 4.5. Biometris-Plant Research International, Wageningen. 

  59. Tiner, RW (1991). The Concept of a Hydrophyte for Wetland Identification, BioScience, 41 (4), pp. 236-247. 

  60. Whittaker, RH (1960). Vegetation of the Siskiyou Mountains, Oregon and California, Ecological Monographs, 30 (3), pp. 279-338. 

  61. Williams, P, Biggs, J, Corfield, A, Fox, G, Walker, D and Whitfield, M (1997). Designing new ponds for wildlife, British Wildlife, 8 (3), pp. 137-150. 

  62. Williams, P, Whitfield, M, Biggs, J, Bray, S, Fox, G, Nicolet, P and Sear, D (2003). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England, Biological Conservation, 115 (2), pp. 329-341. 

  63. Wood, PJ, Greenwood, MT and Agnew, MD (2003). Pond biodiversity and habitat loss in the UK, Area, 35 (2), pp. 206-216. 

  64. Zedler, JB (2003). Wetlands at your service: reducing impacts of agriculture at the watershed scale, Frontiers in Ecology and the Environment, 1 (2), pp. 65-72. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로