$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

폐전자부품에서 유가금속 회수기술
Recovery of Valuable Metal from e-Wasted Electronic Devices 원문보기

한국표면공학회지 = Journal of the Korean institute of surface engineering, v.49 no.6, 2016년, pp.477 - 485  

김유상 (한국과학기술정보연구원 ReSEAT)

Abstract AI-Helper 아이콘AI-Helper

As expensive and valuable metals being used in electronic and semiconducting industries are abandoned as industrial wastes after use of them, it is required to recover them from e-wasted electronics parts. Gold which is used for printed circuit boards or electronic equipments, accessories, etc., is ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 해면상의 V-Ni촉매 잔사는 매년 전 세계적으로 발전소에서 생성되고 있으며 이러한 잔사에 함유된 유가금속의 회수가 중요하다. 본 연구에서는 2단계로 각기 다른 바이오 침출법을 사용하여 Penicillium simplicissimum의 침출성능을 조사하고 바이오 침출에 미치는 열전처리의 영향도 연구하였다[54]. 소정의 온도에서 전처리 공정에서 탄소와 휘발분을 제거하고 바이오 침출연구를 진행한 결과, V는 100% 침출되었고 Ni는 40%가 침출되었으며 Fe는 48.
  • 이러한 문제들을 하결하기 위해서 인듐을 비롯한 유가금속들의 회수는 매우 중요하다. 이에 본 해설에서는 최근의 폐전자부품에서 유가금속을 회수하는 기술동향에 대하여 소개하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
귀금속의 주요 생산국은 어디인가? 그림 1에서 보는 바와 같이, 최근 6년간 세계적인 백금(Pt)의 공급량은 매년 조금씩 감소되거나 정체하고 있는 반면, 수요량은 대체적으로 증가되고 있음을 알 수 있다[45]. 현재, 귀금속의 주요 생산국은 남아프리카 공화국, 러시아, 브라질, 미국, 캐나다, 짐바브웨, 가나, 콜롬비아 등이며, 금은 남아프리카공화국(40%), 브라질(35%), 구소련(15%)에서 주로 생산되고 있으며, 백금족 금속은 남아프리카공화국과 러시아가 전 세계 생산량의 90% 정도를 차지하고 있다[45]. 2015년 Johnson Matthey사의 PGM 시장보고서에 따르면 남아프리카 공화국에서 79.
유가금속은 주로 어느 분야에서 쓰이고 있는가? 리튬을 비롯한 금, 인듐, 갈륨 지르코늄 등의 유가금속은 스마트폰이나 LED, PC, 태양전지 및 연료전지 분야에서 널리 사용되고 있는 금속으로서 점차적으로 적용이 확대되고 있다. 1994년 태양금속공업(주)에서 산·금속 이온교환 회수설비를 개발하면서부터 현재 희성금속, 서라벌금속, 21세기금속 등의 기업에서 이러한 유가금속 회수설비를 제조하고 있다.
유가금속을 회수하는 방법은 무엇이 있으며 각 특징은? 유가금속을 회수하는 방법에는 크게 건식법과 습식법이 있다. 건식법에는 벨트 샌딩, 그라인딩, 환원법이 있으나, 회수공정이 복잡하고 폭발의 위험이 따르고 고순도로 회수하는데 한계가 있다. 습식법에는 이온교환법, 역삼투법, 공침법이 있고, 전처리 공정을 거쳐서 선별된 유가금속들을 산이나 알칼리로 침출하고, 용매추출, 화학침전, 이온교환법, 여과 및 증류기술을 이용하여 목적금속을 분리, 농축한다. 전해정련하면 양극에서 Cu가 용해되고 음극에서 고순도의 Cu로 전착된다. 그림 2에서 보는 바와 같이, 폐전자부품에 함유된 독성의 물질을 제거한 후, 마지막 공정에서 가스화하거나 열분해하여 유가금속을 회수한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (59)

  1. J. Cui, E. Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, Journal of Hazardous Materials B99 263 (2003) 243-263. 

  2. BRUCE A. FOWLER AND NIKKI MAPLES-REYNOLDS, Indium, http://dx.doi.org/10.1016/B978-0-444-59453-2.00039-1, Volume II, Academic Press, Handbook on the Toxicology of Metals 4E CHAPTER 39 (2015) 845-853. 

  3. L. Sun, K. Qiu, Organic oxalate as leachant and precipitant for recovery of valuable metals from spent lithium-ion batteries, Waste Management 32 (2012) 1575-1582. 

  4. T. Wakabayashi, T. Maki, S. Mizutani, H. Hasegawa, H. Sawai, Ismail M.M. Rahman, Yoshinori Tsukagoshi, Selective recovery of indium from lead-smelting dust, Chemical Engineering Journal 277 (2015) 219-228. 

  5. S. Gupta, G. Modi, R. Saini, V. Agarwala, A review on various electronic waste recycling techniques and hazards due to its improper handling, IRJES 3 (2014) 5-17. 

  6. J. Cui, L. Zhang, Metallurgical recovery of metals from electronic waste: A review, Journal of Hazardous Materials 158 (2008) 228-256. 

  7. Johnson Matthey, PGM Market Report November, KISTI (2015) 2. 

  8. A. M. Alfantazi, R. R. Moskalyk, Processing of indium: a review, Minerals Engineering 16 (2003) 687-694. 

  9. J. G. Kim, Investigation on Recycling in Material Flow on Indium Demand Industry, J. Kor. Powd. Met. Inst. 19 (2012) 72-78. 

  10. L. Wang, M. Lee, Recovery of Indium from Secondary Resources by Hydrometallurgical Method, J. of Korean Inst. of Resources Recycling 22 (2013) 3-10. 

  11. J. Li, S. Gao, H. Duan, L. Liu, Recovery of valuable materials from waste liquid crystal display panel, Waste Management 29 (2009) 2033-2039. 

  12. F. Zhang, C. Wei., Z. Deng, X. Li, C. Li, M. Li, Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant, Hydrometallurgy 161 (2016) 102-106. 

  13. X. Li, Z. Deng, C. Li, C. Wei, M. Li, G. Fan, H. Rong, Direct solvent extraction of indium from a zinc residue reductive leach solution by D2EHPA, Hydrometallurgy 156 (2015) 1-5. 

  14. Heesung Metal Ltd, Method Of Manufacturing Gallium Oxide For Oxide Semiconductor By Using Gps And Plasma Recovery Technology, Korean Patent 2015-1546612. 

  15. Y.-J. Choi, S.-H. Hwang, D.-I. Jeon and K.-S. Han, Method for Making High Purity Gallium by Electrowinning, J. of Korean Inst. of Resources Recycling 23 (2014) 63-67. 

  16. Enco Ltd, A Recovery Method Of Gallium From The Mo-cvd Wastes, Korean Patent 2012-0159401 

  17. K. S. Yoon, Development of Material Process; Production Technology of Gallium and Indium for Hightech Material, KIST, 1992. 

  18. S. M. Woo, Development of Refining for High purity (>7N) Ga, As Metals, 2004. 

  19. D. H. Kwon, Development of Commercial Technology and Recovery of rare-Earth metal from e-Wasted LED, 2013. 

  20. D. J. Park, S. H. Kim, K. T. Park, J. H. Mun, H. H. Lee, J. H. Lee, Electrorefining Behavior of Zirconium Scrap with Multiple Cathode in Fluoride-Based Molten Salt, JNFCWT 13 (2015) 11-19. 

  21. Poscomtech Ltd, Separation Method Of Zirconium And Hafnium By Solvent Extraction Process, Korpat 2013-13163351. 

  22. RIST, Method and Equipment of reduction for $ZrCl_2$ KORPAT 2014-1351323. 

  23. I. S. Hwang, Development of Process for Recovery of Zirconium by Electrorefining after using nuclear fuel, Seoul National University, 2014. 

  24. M. Redlinger, R. Eggert, M. Woodhouse, Evaluating the availability of gallium, indium, and tellurium from recycled photovoltaic modules, Solar Energy Materials & Solar Cells 138 (2015) 58-71. 

  25. S. Nusen, T. Chairuangsri, Z. Zhu, C. Y. Cheng, Recovery of indium and gallium from synthetic leach solution of zinc refinery residues using synergistic solvent extraction with LIX 63 and Versatic 10 acid, Hydrometallurgy 160 (2016) 137-146. 

  26. L. Melk, M.L. Anttic, M. Anglada, Material removal mechanisms by EDM of zirconia reinforced MWCNT nanocomposites, Ceramics International 42 (2016) 5792-5801. 

  27. C. Tunsu, M. Petranikova, C. Ekberg, T. Retegan, A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions, Separation and Purification Technology 161 (2016) 172-186. 

  28. X. Li, C. Wei, Z. Deng, C. Li, G. Fan, H. Rong, F. Zhang, Extraction and separation of indium and copper from zinc residue leach liquor by solvent extraction, Separation and Purification Technology 156 (2015) 348-355. 

  29. A. V. M. Silveira, M. S. Fuchs, D. K. Pinheiro, E.H. Tanabe, D.A. Bertuol, Recovery of indium from LCD screens of discarded cell phones, Waste Management 45 (2015) 334-342. 

  30. D. Fontana, Federica Forte, Roberta De Carolis, Mario Grosso, Materials recovery from waste liquid crystal displays: A focus on indium, Waste Management 45 (2015) 325-333. 

  31. L. Rocchetti, A. Amato, F. Beolchini, Recovery of indium from liquid crystal displays, Journal of Cleaner Production 116 (2016) 299-305. 

  32. L. Rocchetti, A. Amato, V. Fonti, Stefano Ubaldini, Ida De Michelis, Bernd Kopacek, Francesco Veglio, Francesca Beolchini, Cross-current leaching of indium from end-of-life LCD panels, Waste Management 42 (2015) 180-187. 

  33. H. Wang, Y. Gu, Y. Wu, Y.-N. Zhang, W. Wang, An evaluation of the potential yield of indium recycled from end-of-life LCDs: A case study in China, Waste Management 46 (2015) 480-487. 

  34. N. Sakai, M. Takeoka, T. Kumaki, H. Asano, T. Konakahara, Y. Ogiwara, Indium-catalyzed reduction of secondary amides with a hydrosiloxane leading to secondary amines, Tetrahedron Letters 56 (2015) 6448-6451. 

  35. H. Yoshida, S. Izhara, E. Nishio, Y. Utsumi, N. Kakimori, F. S. Asgharia, Recovery of indium from TFT and CF glasses of LCD wastes using NaOH-enhanced sub-critical water, J. of Supercritical Fluids 104 (2015) 40-48. 

  36. H. Yoshida, S., E. Nishio, Y. Utsumi, N. Kakimori, S. A. Feridoun, Recovery of indium from TFT and CF glasses in LCD panel wastes using subcritical water, Solar Energy Materials & Solar Cells 125 (2014) 14-19. 

  37. Y. He, E. Ma, Z. Xu, Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction, Journal of Hazardous Materials 268 (2014) 185-190. 

  38. S. Hussain, C. Pezzei, Y. Guuzel, M. Rainer, C. W. Huck, G. K. Bonn, Zirconium silicate assisted removal of residual proteins after organic solvent deproteinization of human plasma, enhancing the stability of the LC-ESI-MS response for the bioanalysis of small molecules, Analytica Chimica Acta, 852 (2014) 284-292. 

  39. V. Smolenski, A. Novoselova, A. Osipenko, M. Kormilitsyn, Y. Luk'yanova, Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases, Electrochimica Acta 133 (2014) 354-358. 

  40. B. Gupta, P. Malik, Z. B. Irfan, Recovery of uranium, thorium and zirconium from allanite by extraction chromatography using impregnated chromosorb, Water Resources and Industry 4 (2013) 21-31. 

  41. H. Hasegawa, I. M. M. Rahman, Y. Egawa, H. Sawai, Z. A. Begum, T. Maki, S. Mizutani, Recovery of indium from end-of-life liquid-crystal display panels using aminopolycarboxylate chelants with the aid of mechanochemical treatment, Microchemical Journal 106 (2013) 289-294. 

  42. C. Jeon, J.-H. Cha, J.-Y. Choi, Adsorption and recovery characteristics of phosphorylated sawdust bead for indium(III) in industrial wastewater, Journal of Industrial and Engineering Chemistry 27 (2015) 201-206. 

  43. J. Park, S. Choi, S. Sohn, K.-R. Kim, I. S. Hwang, Effects of operating conditions on molten-salt electrorefining for zirconium recovery from irradiated Zircaloy-4 cladding of pressurizedwater reactor, Nuclear Engineering and Design 275 (2014) 44-52. 

  44. C.-H. Lee, M.-K. Jeong, M. F. Kilicaslan, J.-H. Lee, H.-S. Hong, S.-J. Hong, Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM, Waste Management 33 (2013) 730-734. 

  45. Johnson Matthey, Platinum tones; supply and demand, PGM Market Report November, KISTI (2015). 

  46. S. Gupta, G. Modi, R. Saini, V. Agarwala, A review on various electronic waste recycling techniques and hazards due to its improper handling, IRJES, 3 (2014) 5-17. 

  47. G. P. Nayaka, J. Manjanna, K. V. Pai, R. Vadavi, S. J. Keny, V. S. Tripathi, Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids, Hydrometallurgy 151 (2015) 73-77. 

  48. Y. Yang, G. Huang, S. Xu, Y. He, X. Liu, Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries, Hydrometallurgy 165 (2016) 390-396. 

  49. P. Rasoulnia, S. M. Mousavi, S. O. Rastegar, H. Azargoshas, Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods, Waste Management 52 (2016) 309-317. 

  50. M. Peterskova, C. Valderrama, O. Gibert, J. Luis Cortina, Extraction of valuable metal ions (Cs, Rb, Li, U) from reverse osmosis concentrate using selective sorbents, Desalination 286 (2012) 316-323. 

  51. H.-Y. Shu, M.-C. Chang1, J.J. Liu, Cation resin fixed-bed column for the recovery ofvaluable THAM reagent from the wastewater, Process Safety and Environmental Protection (2016). 

  52. V. Kumar, J.-C. Lee, J. Jeong, M. K. Jha, B.-S. Kim, R. Singh, Novel physical separation process for eco-friendly recycling of rare and valuable metals from end-of-life DVD-PCBs, Separation and Purification Technology 111 (2013) 145-154. 

  53. L. Li, L. Zhai, X. Zhang, J. Lu, R. Chen, F. Wu, K. Amine, Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process, Journal of Power Sources 262 (2014) 380-385. 

  54. N. Bahaloo Horeh, S. M. Mousavi, S. A. Shojaosadati, Bioleaching of valuable metals from spent lithiumion mobile phone batteries using Aspergillus niger, Journal of Power Sources 320 (2016) 257-266. 

  55. Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, B. Xin, Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery, Journal of Cleaner Production 116 (2016) 249-258. 

  56. M. A. H. Shuva, M. A. Rhamdhani, G. A. Brooks, S. Masood, M.A. Reuter, Thermodynamics data of valuable elements relevant to e-waste processing through primary and secondary copper production: a review, Journal of Cleaner Production 131 (2016) 795-809. 

  57. J. M. Zhaoa, X. Y. Shenb, F. L. Denga,c, F. C. Wanga, C, Y. Wua, H. Z. Liu, Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A, Separation and Purification Technology 78 (2011) 345-351. 

  58. Y. -M. Kuo, An alternative approach to recovering valuable metals from zinc phosphating sludge, Journal of Hazardous Materials 201-202 (2012) 265-272. 

  59. Z. Shengqiang, H. Xiuyang, W. Dahui, Review on Comprehensive Recovery of Valuable Metals from Spent Electrode Materials of Nickel-Hydrogen Batteries, Rare Metal Materials and Engineering, 44 (2015) 73-78. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로