$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Femtosecond Laser Ablation of Polymer Thin Films for Nanometer Precision Surface Patterning 원문보기

한국표면공학회지 = Journal of the Korean institute of surface engineering, v.49 no.1, 2016년, pp.20 - 25  

Jun, Indong (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ,  Lee, Jee-Wook (School of Advanced Materials Engineering, Kookmin University) ,  Ok, Myoung-Ryul (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ,  Kim, Yu-Chan (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ,  Jeon, Hojeong (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Femtosecond laser ablation of ultrathin polymer films on quartz glass using laser pulses of 100 fs and centered at ${\lambda}=400nm$ wavelength has been investigated for nanometer precision thin film patterning. Single-shot ablation craters on films of various thicknesses have been examin...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • We fabricated ablated craters smaller than the diffraction limit and investigated the influence of film thickness and irradiation beam spot size. Topographies of the ablated features were obtained by atomic force microscopy (AFM) and crater diameters were measured and utilized to calculate ablation thresholds.
  • These attenuation ratios were utilized to obtain the pulse energies in the course of the nanoablation experiment that were too low to measure via the energy meter. Using the computer-controlled system, single pulse ablation with quartz only and PEG films of various thicknesses on quartz was performed. The ablation craters were examined by AFM (Nanoscope IIIa, Veeco) with high aspect ratio tips (Nanosensors, AR5-NCHR, Aspect ratio ≥ 5:1).
  • It is noted that the transient pressure generated by vigorous intramolecular interactions and vibration excited by the laser irradiation is an important mechanism of polymer thin film ablation [27,28]. In this study, the film thickness (10 ~ 70 nm) is thinner than the optical penetration depth of the nonlinear absorption of 100 fs laser pulses at 400 nm wavelength, which means electron-photon energy transition takes place through the whole thickness of the films. While the electron excitation energy relaxes, mechanical stress is accumulated in the film due to transient pressure generated by the molecular motion.
  • Femtosecond laser ablation of PEG brush layers with various thicknesses was investigated by examining the profiles of single pulse craters with AFM. The ablation threshold of the thin film was not influenced by the film thickness when the ablation occurs mainly by the nonthermal process.

대상 데이터

  • The sample was precisely aligned perpendicular to the incident laser beam by adjusting the tilting angle of the sample. To investigate the influence of beam spot size and film thickness, long working distance objective lenses with three different numerical aperture sizes were used: 10x Mitutoyo M Plan Apo (N.A.= 0.28), 50x Mitutoyo M Plan Apo (N.A.= 0.55) and 100x Nikon CFI 60 LU Plan Epi ELWD Infinity-Corrected (N.A.= 0.8). The pulse energy was measured by a pyroelectric energy meter (Molectron J5-09) placed between the attenuator and the ND filter.

이론/모형

  • 3 shows the linear relation between the squared ablated spot diameter and the logarithm of the average laser fluence for quartz and films of different thickness with 10x and 100x objective lenses. A square diameter-regression technique was used to calculate the ablation threshold and the Gaussian laser beam spot diameter[23, 24]. The method was necessary for thin film ablation studies, since the direct ablation depth measurement to determine ablation threshold [7] cannot be implemented when the ablation depth exceeds the film thickness.
본문요약 정보가 도움이 되었나요?

참고문헌 (28)

  1. D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, T. Ito, High-resolution direct-write multiphoton photolithography in poly (methylmethacrylate) films, Appl. Phys. Lett. 88 (2006) 184101. 

  2. S. Ibrahim, D. A. Higgins, T. Ito, Direct-write multiphoton photolithography: A systematic study of the etching Behaviors in various commercial polymers, Langmuir 23 (2007) 12406-12412. 

  3. Costas. P. Grigoropoulos, Transport in Laser Microfabrication: Fundamentals and Applications, Cambridge University Press, NEW YORK (2009) 398. 

  4. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63 (1996) 109-115. 

  5. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses, Phys. Rev. Lett. 74 (1995) 2248-2251. 

  6. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B. N. Chichkov, Towards nanostructuring with femtosecond laser pulses, Appl. Phys. A 77 (2003) 229-235. 

  7. D. J. Hwang, C. P. Grigoropoulos, T. Y. Choi, Efficiency of silicon micromachining by femtosecond laser pulses in ambient air, J. Appl. Phys. 99 (2006) 083101. 

  8. N. Hartmann, S. Franzka, J. Koch, A. Ostendorf, B. N. Chichkov, Subwavelength patterning of alkylsiloxane monolayers via nonlinear processing with single femtosecond laser pulses, Appl. Phys. Lett. 92 (2008) 223111. 

  9. H. Furutani, H. Fukumura, H. Masuhara, T. Lippert, A. Yabe, Laser-induced decomposition and ablation dynamics studied by nanosecond interferometry .1. A triazenopolymer film, J. of Phys. Chem. A 101 (1997) 5742-5747. 

  10. T. Lippert, Interaction of photons with polymers: From surface modification to ablation, Plasma Proc. Polym. 2 (2005) 525-546. 

  11. N. Arnold, N. Bityurin, D. Bauerle, Laser-induced thermal degradation and ablation of polymers: bulk model, Appl. Surf. Sci. 138 (1999) 212-217. 

  12. R. Fardel, M. Nagel, T. Lippert, F. Nuesch, A. Wokaun, B. S. Luk'yanchuk, Influence of thermal diffusion on the laser ablation of thin polymer films, Appl. Phys. A 90 (2008) 661-667. 

  13. B. Lukyanchuk, N. Bityurin, S. Anisimov, A. Malyshev, N. Arnold, D. Bauerle, Photophysical ablation of organic polymers: The influence of stresses, Appl. Surf. Sci. 106 (1996) 120-125. 

  14. A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues, Chem. Rev. 103 (2003) 577-644. 

  15. J. Bonse, J. Solis, L. Urech, T. Lippert, A. Wokaun, Femtosecond and nanosecond laser damage thresholds of doped and undoped triazenepolymer thin films, Appl. Surf. Sci. 253 (2007) 7787-7791. 

  16. S. Baudach, J. Bonse, J. Kruger, W. Kautek, Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate, Appl. Surf. Sci. 154 (2000) 555-560. 

  17. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, M. Obara, Ablation of Polymer-Films by a Femtosecond High-Peak-Power Ti Sapphire Laser at 798-Nm, Appl. Phys. Lett. 65 (1994) 1850-1852. 

  18. H. Jeon, R. Schmidt, J. E. Barton, D. J. Hwang, L. J. Gamble, D. G. Castner, C. P. Grigoropoulos, K. E. Healy, Chemical Patterning of Ultrathin Polymer Films by Direct-Write Multiphoton Lithography, J. Am. Chem. Soc. 133 (2011) 6138-6141. 

  19. E. A. Cavalcanti-Adam, D. Aydin, V. C. Hirschfeld-Warneken, J. P. Spatz, Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location, Hfsp Journal 2 (2008) 276-285. 

  20. J. Tang, R. Peng, J. D. Ding, The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces, Biomaterials 31 (2010) 2470-2476. 

  21. Q. Cheng, S. Li, K. Komvopoulos, Plasma-assisted surface chemical patterning for single-cell culture, Biomaterials 30 (2009) 4203-4210. 

  22. H. W. Ma, D. J. Li, X. Sheng, B. Zhao, A. Chilkoti, Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization, Langmuir 22 (2006) 3751-3756. 

  23. A. Ben-Yakar, R. L. Byer, Femtosecond laser ablation properties of borosilicate glass, J. Appl. Phys. 96 (2004) 5316-5323. 

  24. N. Sanner, O. Uteza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, M. Sentis, Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics, Appl. Phys. A. 94 (2009) 889-897. 

  25. J. M. Liu, Simple technique for measurements of pulsed gaussian-beam spot sizes, Opt. Lett. 7 (1982) 196-198. 

  26. S. Hermann, N. P. Harder, R. Brendel, D. Herzog, H. Haferkamp, Picosecond laser ablation of SiO2 layers on silicon substrates, Appl. Phys. A. 99 (2010) 151-158. 

  27. H. Masuhara, T. Asahi, Y. Hosokawa, Laser nanochemistry, Pure and Appl. Chem. 78 (2006) 2205-2226. 

  28. Y. Hosokawa, M. Yashiro, T. Asahi, H. Masuhara, Photothermal conversion dynamics in femtosecond and picosecond discrete laser etching of Cuphthalocyanine amorphous film analysed by ultrafast UV-VIS absorption spectroscopy, J. of Photochem. and Photobio. A. 142 (2001) 197-207. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로