$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가
Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission 원문보기

Journal of nuclear fuel cycle and waste technology = 방사성폐기물학회지, v.14 no.4, 2016년, pp.343 - 356  

김태만 (한국원자력환경공단) ,  구지영 (한국원자력환경공단) ,  도호석 (한국원자력환경공단) ,  조천형 (한국원자력환경공단) ,  고재훈 ((주)코네스코퍼레이션)

초록
AI-Helper 아이콘AI-Helper

한국원자력환경공단에서는 국내 경수로 원전에서 발생한 사용후핵연료를 건식으로 저장하기 위하여 안전성을 최우선으로 국내/외 기술기준을 준수하여 금속겸용용기를 개발하였다. 이러한 금속용기는 50년 동안 주요 안전성요소(구조, 열제거, 격납, 임계방지, 방사선차폐 등)에 대한 건전성을 유지하고, 운영기간 중 유지보수 과정에 폐기물의 발생을 최소화 하고 이를 안전하게 관리할 수 있도록 설계하였다. 본 논문은 설계수명이 종료된 금속용기 본체 및 내/외부 구조물에 대한 방사화 평가를 통해 정량적인 방사능 재고량에 대한 정보를 제공한다. 본 논문에서는 금속용기 본체 및 구성품의 방사화 방사능 재고량은 MCNP5 ORIGEN-2 평가체계를 이용하여 계산하였으며, 각 구성품의 화학조성, 중성자속 분포, 반응률 및 저장기간 동안 중성자조사 기간을 반영하여 평가하였다. 평가결과, 설계수명 이후 10년 경과시 모든 금속재질에서 $^{60}Co$의 방사능이 기타 핵종들에 비하여 가장 큰 방사능을 띄는 것으로 나타났으며, 중성자차폐체인 수지에서는 수명직후 $^{28}Al$$^{24}Na$등의 고에너지 감마선을 방출하는 핵종은 반감기가 짧아 0.5년 이후에는 무시할 수 있는 수준으로 나타났다. 또한, 사용후핵연료 제거후 캐니스터 및 금속용기 본체에 대한 표면 선량률 평가결과, 상당히 낮은 값을 나타내어, 해체 시 작업자가 받는 피폭선량은 무시할 수 있는 수준으로 평가되었다. 본 평가방법은 사용후핵연료 금속겸용용기 해체 시 계획의 수립 및 해체작업 종사자의 피폭선량 예측, 방사성폐기물의 관리/재활용 등의 기본자료로 활용할 수 있을 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the mo...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Based on the evaluations of this study it is believed that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when the decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure of workers engaged in decommissioning operations, the management of radioactive wastes, etc. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime of 50 years were evaluated to be at very low levels, and the radiation exposure doses to which radiation workers are subjected during the decommissioning process appeared to be at negligible levels.
  • The neutron cross-section was then obtained by calculating the reaction rate of a parent nuclide activated by neutron flux and irradiation in the main body and each component of a metal cask, using input data such as chemical composition based on the material quality of the components of the metal cask, etc. Based on this method, the neutron cross-section of an activated parent nuclide was corrected in the light-water fuel library of the ORIGEN-2 computation code, and the radioactivity of the radionuclide was calculated again based on neutrons accumulated over the design lifetime [9]. The MCNP code includes libraries of (n,γ), (n,p), (n,d), (n,α), (n,3He), etc.
  • Finally, to establish the decontamination and decommissioning procedures, the surface exposure dose rates of the main body of the cask and the canister, from which all of the spent nuclear fuel had been removed, were evaluated at the point of design lifetime expiration. However, because the inside of the canister, which comes in direct contact with the fuel, can be decontaminated, the contamination conditions were not taken into consideration for the evaluation.
  • In this study, an evaluation was conducted on the radioactive inventory of the components of a spent nuclear fuel metal cask over 10 years after its design lifetime using MCNP and ORIGEN-2. The results of the calculation of neutron flux in the main body and components of a metal cask, including the basket that is closest to the fuel, and the neutron shield that is farthest from the fuel, were between 2.
  • This study applies the MCNP5 computation code, which enables a realistic radiation transport analysis of three-dimensional geometrical structures [7]. It was used for calculating the neutron flux and reaction rate of the main body and components of a metal cask, as well as for detailed modeling. The total neutron flux emitted by the 21 bundles of design basis fuel at the initial stage of loading was evaluated using the ORIGEN-S module of the SCALE 6.
  • The radioactive inventory of the main body and components of the metal cask was calculated by applying the MCNP5·ORIGEN-2 evaluation system and by considering each component’s chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period.
  • An activation evaluation of the main body and internal/external components of metal casks whose design lifetime has ended provides quantitative data on their radioactive inventory. This study can be utilized as basic data necessary for the decommissioning of the metal cask (i.e., estimation of exposure doses to workers during decommissioning operations, determination of a decontamination technology, assessment of residual radioactivity at facilities/sites, etc.) [3].

이론/모형

  • It was used for calculating the neutron flux and reaction rate of the main body and components of a metal cask, as well as for detailed modeling. The total neutron flux emitted by the 21 bundles of design basis fuel at the initial stage of loading was evaluated using the ORIGEN-S module of the SCALE 6.1 computation code [8]. From among fuels generated from domestic light-water reactors, the selection of the design basis fuel was made based on the following conditions: the degree of burnup of 45,000MWD/MTU or less; 235U enrichment degree of 4.
  • Estimating the radioactive inventory of the main body and components of a metal cask resulting from neutron irradiation can be conducted using computation codes. This study applies the MCNP5 computation code, which enables a realistic radiation transport analysis of three-dimensional geometrical structures [7]. It was used for calculating the neutron flux and reaction rate of the main body and components of a metal cask, as well as for detailed modeling.
본문요약 정보가 도움이 되었나요?

참고문헌 (10)

  1. S.T. Yoon. Technology development for implementation of spent nuclear fuel transportation & storage system, 2nd Final Report. Korea Radioactive Waste Agency Report, KORAD-TR-2014-01 (2014). 

  2. S.B. Hong, B.G. Seo, D.G. Cho, G.H. Jeong, and J.K. Moon, "A study on the inventory estimation for the Activated bioshield concrete of KRR-2", Journal of Radiation Protection, 37(4), 202-207 (2012). 

  3. Nuclear Safety and Security Commission (NSSC), "Technical standards for the structure and equipment of interim storage facility for spent nuclear fuel", NSSC 2015-19 (2015). 

  4. American Society of Mechanical Engineering (ASME), An international code 2010 ASME boiler & pressure vessel code section.II Part A. ferrous material specifications, ASME Press, New York (2010). 

  5. United States Nuclear Regulatory Commission (U.S.NRC), Long lived activation products in reactor materials, NUREG/CR-3474, US (1984). 

  6. G.Y. Cha, S.Y. Kim, J.M. Lee, and Y.S. Kim, "The effects of impurity composition and concentration in reactor structure materials on neutron activation inventory in pressurized water reactor", JNFCWT, 14(2), 91-100 (2016). 

  7. D.B. Pelowitz, "MCNP - A General Mote Carlo N Particle Transport Code, Version 5", LA-CP-11-00438, Version 2.7.0, Oak Ridge National Laboratory, Oak Ridge (2011). 

  8. I.C. Gauld, "ORIGEN-S: Depletion Module to Calculate Neutron Activation, Actinide Transmutation, Fission Product Generation, and Radiation Source Terms", ORNL/TM-2005/39, Version 6.1, Sect.F7, Oak Ridge National Laboratory, Oak Ridge (2011). 

  9. A.G. Croff, "A User's Manual for the ORIGEN-2 Computer Code", ORNL/TM-7175, Oak Ridge National Laboratory, Oak Ridge (1980). 

  10. Nuclear Safety and Security Commission (NSSC), "Enforcement of Decree of the Nuclear Safety Act", NSSC 26760 (2015). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로