$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

파밤나방과 배추좀나방의 고온 감수성 차이와 연중 발생 변이
Differential Susceptibility to High Temperature and Variation of Seasonal Occurrence between Spodoptera exigua and Plutella xylostella 원문보기

한국응용곤충학회지 = Korean journal of applied entomology, v.55 no.1, 2016년, pp.17 - 26  

김민현 (안동대학교 식물의학과) ,  이승희 (안동대학교 식물의학과) ,  김용균 (안동대학교 식물의학과)

초록
AI-Helper 아이콘AI-Helper

기후변화는 국내 해충상의 변화에 영향을 주는 주요 요인 가운데 하나로 알려지고 있다. 특히 지구 온난화 모델에 따라 남방계 곤충의 서식지 확대가 예상되고 있다. 휴면 기작을 가지고 있지 않은 파밤나방(Spodoptera exigua)배추좀나방(Plutella xylostella)은 시설재배지를 중심으로 국내에서 월동이 가능한 것으로 알려지고 있다. 그러나 두 해충은 계절적 발생 양상에서 뚜렷한 차이를 보여주었다. 배추좀나방은 이른 봄철과 가을기간에 발생하고 여름 기간 중에는 발생하지 않았다. 반면에 파밤나방은 늦은 봄철에 나타나기 시작해 가을까지 지속적으로 발생하였다. 본 연구는 이러한 두 남방계 곤충이 계절적 발생 차이를 보이는 것이 이들이 갖는 고온에 대한 감수성 차이에 기인한 것으로 가정하였다. 이 가설을 증명하기 두 곤충의 내열성을 비교 분석하였다. 동일한 열처리($42^{\circ}C$)에서 배추좀나방 유충은 40 분 노출에 100% 사망률을 보인 반면, 파밤나방은 대부분의 유충이 80 분의 노출에서도 생존하였다. 이러한 내열성은 두 곤충 모두 이들의 발육시기에 따라 상이했다. 배추좀나방은 4령 유충과 성충이 가장 높은 내열성을 보인 반면, 파밤나방은 1령 유충에서 가장 높게 나타냈다. 두 곤충 모두는 $37^{\circ}C$에서 30 분간 전 처리 후 고온에 노출시키면 생존율이 뚜렷하게 증가했다. 이러한 내열성유기는 두 곤충 모두 혈림프의 글리세롤 함량 증가와 관련성을 보였다. 또한 파밤나방의 경우는 열충격단백질의 발현도 증가하였다. 따라서 이상의 결과는 여름기간 배추좀나방의 발생이 없는 것은 이 곤충의 고온에 대한 높은 감수성에 기인된 것으로 보이고, 반면에 파밤나방은 비교적 높은 내열성을 보유하여 여름 기간에도 발생을 지속시킨 것으로 해석되었다.

Abstract AI-Helper 아이콘AI-Helper

Climate change has been regarded as one of main factors to change Korean insect pest fauna. Especially, a global warming model predicts to expand habitat for insect pests originated from tropical or subtropical regions. Two insect pests, the beet armyworm (Spodoptera exigua) and the diamondback moth...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • 본 연구는 배추좀나방과 파밤나방의 여름 기간 발생 차이가 두 곤충의 내열성의 차이에서 비롯된다는 가설을 검증하였다. 이를 위해 두 곤충의 모든 발육 시기에서 고온에 대한 감수성을 분석하였다.
  • 또 다른 가능성은 이 두 곤충의 고온에 대한 감수성이 상이한 데에서 비롯될 수 있다. 즉, 배추좀나방이 파밤나방에 비해서 고온에 견디는 내열성이 낮다면 여름 기간 중 발생이 어려웠을 것이라는 가설을 세울 수 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
배추좀나방은 무엇인가? 배추좀나방은 배추를 포함한 다양한 십자화과 작물을 가해하는 나비목 해충으로 국내에서는 1980년대 이후 급격하게 밀도가 증가하고 있다(Kim and Lee, 1991). 휴면기작을 보유하지 않은 채 국내에서 연중 여러 세대 발생하고, 다양한 농약 노출에 따라 약제 저항성이 발달하여 효과적으로 이 해충의 밀도를 낮추는 것이 어려운 것으로 알려져 있다(Kim et al.
파밤 나방의 국내 연중 발생 횟수는 몇 회로 추정되는가? 더욱이 이 곤충이 보유한 내한 성기작은 비교적 극한의 저온을 피할 수 있는 간이 시설 재배지 조건에서는 국내 월동이 가능한 것으로 추정하고 있다(Kim and Kim, 1997). 국내 이 곤충의 연중 발생은 4-5 회로 추정되고 있다(Goh et al., 1993).
파밤 나방은 몇 종의 자연 기주에 가해하는 해충인가? 파밤나방(Spodoptera exigua)과 배추좀나방(Plutella xylostella) 은 채소류에 매우 심각한 경제적 손실을 끼치는 해충이다. 파밤 나방은 채소 13 종, 전작물 12 종, 화훼류 6 종, 기타 11 종으로 총 42 종의 자연 기주를 가해하는 광식성 해충이다. 주로 아열대 지역에 분포하는 파밤나방은 국내에서 농작물에 피해를 주기 시작한 것은 1980년대 후반부터 시설재배지의 확대에 따라 문제시되었다(Goh et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (33)

  1. Bahar, M.H., Hegedus, D., Soroka, J., Coutu, C., Bekkaoui, D., Dosdall, L., 2013. Survival and Hsp70 gene expression in Plutella xylostella and its larval parasitoid Diadegma insulare varied between slowly ramping and abrupt extreme temperature regimes. PLoS ONE 8, e73901. 

  2. Chang, X.Q., Ma, C.S., Zhang, S., Lu, L., 2012. Thermal tolerance of diamondback moth Plutella xylostella. Ying Yong Sheng Tai Xue Bao 23, 772-778. 

  3. Feng, H.Q., Wu, K.M., Cheng, D.F., Guo, Y.Y., 2003. Radar observations of the autumn migration of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bull. Entomol. Res. 93, 115-124. 

  4. Fey, R.E., Carranza, R.L., 1973. Cotton pests: overwintering of three lepidopterous species in Arizona. J. Econ. Entomol. 66, 657-659. 

  5. Goh, H.G., Choi, J.S., Eom, K.B., Choi, K.M., Kim, J.W., 1993. Seasonal fluctuation of beet armyworm, Spodoptera exigua (Hubner), adult and larva. Kor. J. Appl. Entomol. 32, 389-394. 

  6. Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29, 180-183. 

  7. Goh, H.G., Park, J.D., Choi, Y.M., Choi, K.M., Park, I.S., 1991. The host plants of beet armyworm, Spodoptera exigua (Hubner), (Lepidoptera: Noctuidae) and its occurrence. Kor. J. Appl. Entomol. 30, 111-116. 

  8. Jo, H.M., Kim, Y., 2001. Relationship between cold hardiness and diapause in the smaller fruit tortrix, Adoxophyes orana (Fischer von Roslerstamm). J. Asia Pac. Entomol. 4, 1-9. 

  9. Jung, M.P., Park, H.H., Lee, S.G., Kim, K.H., 2013. Prediction of adult emergence time and generation number of overwintering small brown planthopper, Laodelphax striatellus according to RCP8.5 climate change scenario. Kor. J. Appl. Entomol. 52, 427-430. 

  10. Kim, E., Choi, B., Park, Y., Cha, O., Jung, C., Lee, D., Kim, K., Kim, Y., 2014. Overwintering conditions of the diamondback moth and genetic variation of overwintering populations. Kor. J. Appl. Entomol. 53, 355-365. 

  11. Kim, E., Park, A., Park, Y., Kim, J., Kim, Y., 2015. Decrease in genetic variation of overwintering populations of the diamondback moth during seasonal occurrence. Kor. J. Appl. Entomol., 54, 303-310. 

  12. Kim, M.H., Lee, S.C., 1991. Bionomics of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in southern region of Korea. Kor. J. Appl. Entomol. 30, 169-173. 

  13. Kim, Y., Kim, K., Kim, N., 1999. Genetic difference of two field populations of Plutella xylostella (Linne) (Lepidoptera: Yponomeutidae) measured with four polymorphic allozymes. J. Asia Pac. Entomol. 2, 1-5. 

  14. Kim, Y., Kim, N., 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 26, 1117-1123. 

  15. Kim, Y.H., Lee, J.H., Lee, S.H., 2011. Determination of organophosphate and carbamate resistance allele frequency in diamondback moth populations by quantitative sequencing and inhibition tests. J. Asia Pac. Entomol. 14, 29-33. 

  16. Kiritani, K., 2006. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul. Ecol. 48, 5-12. 

  17. Lee, K.Y., Chang, Y., Kim Y., 2002. Trehalose, a major sugar cryoprotectant of the overwintering rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae). J. Asia Pac. Entomol. 5, 1-7. 

  18. Lee, S., Heo, I., Lee, K., Kim, S., Lee, Y., Kwon, W.T., 2008. Impacts of climate change on phenology and growth of crops: in the case of Naju. J. Kor. Geogr. Soc. 43, 20-35. 

  19. Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25, 402-408. 

  20. Mikkola, K., 1970. The interpretation of long-range migrations of Spodoptera exigua Hb. (Lepidoptera: Noctuidae). J. Anim. Ecol. 39, 593-598. 

  21. NIMR (National Institute of Meteorological Research), 2011. Report on climate change scenarios for IPCC AR5, National Institute of Meteorological Research. 

  22. Park, Y., Kim, Y., 2013. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J. Exp. Biol. 216, 4196-4203. 

  23. Park, Y., Kim, Y., 2014. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella. J. Insect Physiol. 67, 56-63. 

  24. SAS Institute, Inc., 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA. 

  25. Shim, K.M., Kim, Y.S., Jung, M.P., Kim, S.C., Min, S.H., So, K.H., 2013. Agro-climate zonal characteristics of the frequency of abnormal air temperature occurrence in South Korea. Clim. Change Res. 4, 189-199. 

  26. Sonoda, S., Ashfaq, M., Tsumuki, H., 2006. Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19.5) from the diamondback moth, Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch. Insect Biochem. Physiol. 62, 80-90. 

  27. Springer, M.A., Lindquist, S., 1998. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639-648. 

  28. Storey, K.B., Storey, J.M., 2012. Insect cold hardiness: metabolic, gene, and protein adaptation. Can. J. Zool. 90, 456-475. 

  29. Xu, Q., Zou, Q., Zheng, H., Zhang, F., Tang, B., Wang, S., 2011. Three heat shock proteins from Spodoptera exigua: gene cloning, characterization and comparative stress response during heat and cold shocks. Comp. Biochem. Physiol. B 159, 92-102. 

  30. Zhang, G.H., Liu, H., Wang, J.J., Wang, Z.Y., 2014. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of the predatory mite, Neoseiulus cucumeris (Acari: Phytoseiidae). Exp. Appl. Acarol. 64, 73-85. 

  31. Zhang, L.J., Wu, Z.L., Wang, K.F., Liu, Q., Zhuang, H.M., Wu, G., 2015a. Trade-off between thermal tolerance and insecticide resistance in Plutella xylostella. Ecol. Evol. 5, 515-530. 

  32. Zhang, S., Fu, W., Li, N., Zhang, F., Liu, T.X., 2015b. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress. J. Insect Physiol. 73, 47-52. 

  33. Zhang, W., Rudolf, V.H., Ma, C.S., 2015c. Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. Oecologia 179, 947-957. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로