$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

운동과 뇌신경가소성: 고강도 인터벌 운동의 효과성 고찰
Exercise and Neuroplasticity: Benefits of High Intensity Interval Exercise 원문보기

생명과학회지 = Journal of life science, v.26 no.1 = no.189, 2016년, pp.129 - 139  

황지선 (이화여자대학교 체육과학과) ,  김태영 (이화여자대학교 체육과학과) ,  황문현 (인천대학교 운동건강학부) ,  이원준 (이화여자대학교 체육과학과)

초록
AI-Helper 아이콘AI-Helper

운동은 중추와 말초의 각종 성장인자(BDNF, IGF-1, VEGF)들의 상호작용에 의해 뇌신경가소성을 증진시키고 인지기능을 향상시킨다. 지금까지 저·중강도 지속성 유산소 운동의 효과를 검증하는 선행연구가 주로 이루어졌기 때문에 고강도 운동에 따른 뇌신경성장인자의 발현 및 인지기능 개선 효과에 대한 연구는 미흡한 실정이다. 하지만 최근의 과학적 증거들은 고강도 인터벌 운동이 시간 효율성, 안전성, 심폐지구력 개선 및 체중 감소에 효과적임을 암시하고 있으며, 미스포츠의학회(ACSM)에서 권장하는 일반인을 위한 운동지침에서도 무리가 되지 않는 수준에서 고강도 인터벌 운동 수행을 강조하고 있다. 특히 최근에 발표된 선행 연구에서 고강도 인터벌 운동은 말초조직과 뇌에서의 BDNF, IGF-1, VEGF의 발현을 증가시키고 그로 인한 인지기능 발달에 기여한다는 것을 보고하였으며, 관련된 유력한 생리학적 기전으로 고강도 인터벌 운동으로 인한 뇌의 저산소화와 뇌신경대사의 부가적인 에너지원이 될 수 있는 젖산 이용성 증가가 대두되고 있다. 따라서 향후 저산소화 및 젖산 이용성 증가에 따른 뇌신경성장인자 발현 개선에 어떤 분자생물학적 기전이 관여하는지를 탐구할 필요가 있으며, 또한 동일한 운동량을 가진 저·중강도 지속성 유산소 운동과의 비교 연구를 통해 뇌신경성장인자의 발현 및 인지기능 개선에 있어 고강도 인터벌 운동의 우수성을 입증하는 연구가 요구된다.

Abstract AI-Helper 아이콘AI-Helper

Exercise increases the expression and interaction of major neurotrophic factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) at both central and peripheral tissues, which contributes to improved brain and neural...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 최근 고강도 인터벌 운동이 뇌 신경 체계 성장 인자들의 발현 및 인지기능 향상에 기여하고[1, 60, 65, 71], 고강도 운동 중 발생하는 저산소화(hypoxia)가 VEGF 발현을 촉진시키며[63], 고강도 운동으로 인해 증가된 혈중 젖산이 뇌의 대사과정에서 2차적인 에너지원이 된다는 선행 연구 결과[53]는 고강도 인터벌 운동이 뇌신경가소성과 인지기능 개선에 효과적인 전략으로 사용될 수 있음을 시사하고 있다. 따라서 본 연구는 운동형태 및 강도가 뇌신경체계 성장인자들의 발현 및 인지기능 개선에 미치는 효과를 선행연구를 바탕으로 살펴보고, 고강도 인터벌 운동으로 인한 뇌신경성장인자의 발현 및 인지기능 개선에 어떤 생리학적 기전이 관여하는지에 대해 고찰해보고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (80)

  1. Afzalphuor, M. E., Chadorneshin, H. T., Foadoddini, M. and Eivari, H. A. 2015. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol. Behav. 147, 78-83. 

  2. Barbieri, M., Ferrucci, L., Ragno, E., Corsi, A., Bandinelli, S., Bonafe, M., Olivieri, F., Giovagnetti, S., Franceschi, C., Guralnik, J. M. and Paolisso, G. 2003. Chronic Inflammation and the effect of IGF-1 on muscle strength and power in older persons. Am. J. Physiol. Endocrinol. Metab. 284, E481-E487. 

  3. Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P. and Cotman, C. W. 2005. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133, 853-861. 

  4. Bergersen, L. H. 2007. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145, 11-19. 

  5. Borst, S. E., De Hoyos, D. V., Garzarella, L., Vincent, K., Pollock, B. H., Lowenthal, D. T. and Pollock, M. L. 2001. Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Med. Sci. Sports. Exerc. 33, 648-653. 

  6. Breen, E. C., Johnson, E. C., Wagner, H. M., Tseng, M., Sung, L. A., and Wagner, P. D. 1996. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J. Appl. Physiol. 81, 355-361. 

  7. Brunelli, A., Dimauro, I., Sgro, P., Emerenziani, G. P., Magi, F., Baldari, C., Guidetti, L., Luigi, L. D., Parisi, P. and Caporossi, D. 2012. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Med. Sci. Sports Exerc. 44, 1871-1880. 

  8. Cappon, J., Brasel, J. A., Mohan, S. and Cooper, D. M. 1994. Effect of brief exercise on circulating insulin-like growth factor I. J. Appl. Physiol. 76, 2490-2496. 

  9. Carro, E., Nunez, A., Busiguina, S. and Torres-Aleman, I. 2000. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926-2933. 

  10. Cassiman, D., Denef, C., Desmet, V. J. and Roskams, T. 2001. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 33, 148-158. 

  11. Cetinkaya, C., Sisman, A. R., Kiray, M., Camsari, U. M., Gencoglu, C., Baykara, B., Aksu, I. and Uysal, N. 2013. Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats. Neurosci. Lett. 549, 177-181. 

  12. Coco, M., Alagona, G., Rapisarda, G., Costanzo, E., Calogero, R. A. and Perciavalle, V. 2010. Elevated blood lactate is associated with increased motor cortex excitability. Somatosens Mot. Res. 27, 1-8. 

  13. Colcombe, S. and Kramer, A. F. 2003. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125-130. 

  14. Colcombe, S. J., Erickson, K. I., Scalf, P. E., and Kim, J. S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D. X., Hu, L. and Kramer, A. F. 2006. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 1166-1170. 

  15. Colier, W. N., Quaresima, V., Oeseburg, B. and Ferrari, M. 1999. Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot. Exp. Brain. Res. 129, 457-461. 

  16. Cotman, C. W. and Berchtold, N. C. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trend. Neurosci. 25, 295-301. 

  17. Cotman, C. W., Berchtold, N. C. and Christie, L. A. 2007. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464-472. 

  18. Dery, N., Pilgrim, M., Gibala, M., Gillen, J. and Wojtowicz, J. M. 2013. Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression. Front. Neurosci. 7, 66. 

  19. DeVol, D. L., Rotwein, P., Sadow, J. L., Novakofski, J. and Bechtel, P. J. 1990. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am. J. Physiol. 259, E89-E95. 

  20. Ding, Q., Vaynman, S., Akhavan, M., Ying, Z. and Gomez-Pinilla, F. 2006. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140, 823-833. 

  21. Erickson, K. I. and Kramer, A. F. 2009. Aerobic exercise effects on cognitive and neural plasticity in older adults. Br. J. Sports Med. 43, 22-24. 

  22. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E. and Kramer, A. F. 2011. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 108, 3017-3022. 

  23. Ferris, L. T., Williams, J. S. and Shen, C. L. 2007. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 39, 728-734. 

  24. Gavin, T. P. and Wager, P. D. 2001. Effect of short-term exercise training on angiogenic growth factor gene responses in rats. J. Appl. Physiol. 90, 1219-1226. 

  25. Greer, B. K., Sirithienthad, P., Moffatt, R. J., Marcello, R. T. and Panton, L. B. 2015. EPOC comparison between isocaloric bouts of steady-state aerobic, intermittent aerobic, and resistance training. Res. Q. Exerc. Sport. 86, 190-195. 

  26. Gregory, S. M., Spiering B. A., Alemany, J. A., Tuckow, A. P., Rarick, K. R., Staab, J. S., Hatfield, D. L., Kraemer, W. J., Maresh, C. M. and Nindl, B. C. 2013. Exercise-induced insulin-like growth factor I system concentrations after training in women. Med. Sci. Sports Exerc. 45, 420-428. 

  27. Griffin, E. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M. and Kelly, A. M. 2011. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 104. 934-941. 

  28. Gustafsson, T., Adrian, P., Lennart, K., Eva, J. and Carl, J. S. 1999. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am. J. Physiol. 276, H679-H685. 

  29. Haskell, W. L., Lee, I. M., Rate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., Macera, C. A., Heath, G. W., Thompson, P. D. and Bauman, A. 2007. Physical activity and public health: updated recommendation for adults from American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39, 1423-1434. 

  30. Hofer, M. M. and Barde, Y. A. 1988. Brain-derived neurotrophic factor prevents neuronal death in vivo. Nature 331, 261-262. 

  31. Hoier, B. and Hellsten, Y. 2014. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation 21, 301-314. 

  32. Hoppeler, H. and Vogt, M. 2001. Hypoxia training for sea-level performance. Training high-living low. Adv. Exp. Med. Biol. 502, 61-73. 

  33. Hotting, K. and Roder, B. 2013. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 37, 2243-2257. 

  34. Huang, T., Larsen, K. T., Ried-Larsen, M., Moller, N. C. and Andersen, L. B. 2014. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand. J. Med. Sci. Sports 24, 1-10. 

  35. Ide, K., Horn, A. and Secher, N. H. 1999. Cerebral metabolic response to submaximal exercise. J. Appl. Physiol. 87, 1604-1608. 

  36. Juel, C., Klarskov, C., Nielsen, J. J., Krustrup, P., Mohr, M. and Bangsbo, J. 2003. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 286, E245-E251. 

  37. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A. and Colcombe, A. 1999. Ageing, fitness and neurocognitive function. Nature 400, 418-419. 

  38. Larrebee, M. G. 1995. Lactate metabolism and its effects on glucose metabolism in an exercised neural tissue. J. Neurochem. 64, 1734-1741. 

  39. Lezi, E., Burns, J. M. and Swerdlow, R. H. 2014. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol. Aging. 35, 2574-2583. 

  40. Lopez-Lopez, C., LeRoith, D. and Torres-Aleman, I. 2004. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc. Natl. Acad. Sci. USA 101, 9833-9838. 

  41. Lou, S. J., Liu, J. Y., Chang, H. and Chen, P. J. 2008. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res. 1210, 48-55. 

  42. Maren, S. K., Sarah, S., Sascha, O., Christian, T., Alexandra, D., Jorn, L. and Jochen, K. 2012. Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. Neuroreport 23, 889-893. 

  43. Monteggia, L. M., Barrot, M., Powell, C. M., Berton, O., Galanis, V., Gemelli, T., Meuth, S., Nagy, A., Greene, R. W. and Nestler, E. J. 2004. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl. Acad. Sci. USA 101, 10827-10832. 

  44. Neeper, S. A., Gomez-Pinilla, F., Choi, J. and Cotman, C. 1995. Exercise and brain neurotrophins. Nature 373, 109. 

  45. Pareja-Galeano, H., Brioche, T., Sanchis-Gomar, F., Montal, A., Jovani, C., Martinez-Costa, C., Gomez-Cabrera, M. C. and Vina, J. 2013. Impact of exercise training on neuroplasticity-related growth factors in adolescents. J. Musculoskelet. Neuronal Interact. 13, 368-371. 

  46. Paul, D. L., Skyla. M. H., Bradley. J. C. and Timothy, D. N. 2013. Physical activity and the brain: A review of this dynamic, bi-directional relationship. Brain Res. 1539, 95-104. 

  47. Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosnuov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R. and Small, S. A. 2007. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638-5643. 

  48. Phillips, C., Baktir, M. A., Srivatsan, M. and Salehi, A. 2014. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Fornt. Cell Neurosci. 170, 1-15. 

  49. Pilegaard, H., Domino, K., Noland, T., Juel, C., Hellsten, Y., Halestrap, A. P. and Bangsbo, J. 1999. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am. J. Physiol. 276, E255-261. 

  50. Poo, M. M. 2001. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24-32. 

  51. Quistorff, B., Secher, N. H. and van Leishout, J. J. 2008. Lactate fuels the human brain during exercise. FASEB J. 22, 3443-3449. 

  52. Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K. and Pilegaard, H. 2009. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94, 1062-1069. 

  53. Rasmussen, P., Wyss, M. T. and Lundby, C. 2011. Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 25, 2865-2873. 

  54. Ratey, J. J. and Loehr, J. E. 2011. The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev. Neurosci. 22, 171-185. 

  55. RojasVega, S., Struder, H. K., Vera Wahrmann, B., Schmidt, A., Bloch, W. and Hollmann, W. 2006. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 1121, 59-65. 

  56. Rooks, C. R., Thom. N. J., McCully, K. K. and Dishman, R. K. 2010. Effects of incremental exercise on cerebral oxygenation measured by near-infared spectroscopy: A systematic review. Prog. Neurobiol. 92, 134-150 

  57. Ruscheweyh, R., Willemer, C., Kruger, K., Duning, T., Warnecke, T., Sommer, J., Volker K., Ho, H. W., Mooren, F., Knecht, S. and Floel, A. 2011. Physical activity and memory functions: and interventional study. Neurociol. Aging 32, 1304-1319. 

  58. Schiffer, T., Schulte, S., Sperlich, B., Achtzehn, S., Fricke, H. and Struder, H. K. 2011. Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci. Lett. 488, 234-237. 

  59. Schwartz, A. J., Brasel, J. A., Hintz, R. L., Mohan, S. and Cooper, D. M. 1996. Effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J. Clin. Endocrinol. Metab. 81, 3492-3497. 

  60. Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B. and Nielsen, J. B. 2014. Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiol. Learn. Mem. 116, 46-58. 

  61. Sonntag, W. E., Ramsey, M. and Carter, C. S. 2005. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res. Rev. 4, 195-212. 

  62. Suzuki, J., Gai, M., Batra, S. and MUsch, T. 1997. Effects of treadmill training on the arteriolar and venular portions of capillary in soleus muscle of young and middle-aged rats. Acta. Physiol. Scand. 159, 113-121. 

  63. Tang, K., Xia, F. C., Wagner, P. D. and Breen, E. C. 2010. Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir. Physiol. Neurobiol. 170, 16-22. 

  64. Timmons, J. A., Jansson, E., Fischer, H., Gustafsson, T., Greenhaff, P. L., Ridden, J., Rachman, J. and Sundberg, C. J. 2005. Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. BMC Biol. 3, 19. 

  65. Tonoli, C., Heyman, E., Buyse, L., Roelands, B., Piacentini, M. F., Bailey, S., Pattyn, N., Berthoin, S. and Meeusen, R. 2015. Neurotrophins and cognitive functions in T1D compared with healthy controls: effects of a high intensity exercise. Appl. Physiol. Nutr. Metab. 40, 20-27. 

  66. Trejo, J. L., Carro, E. and Torres-Aleman, I. 2001, Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628-1634. 

  67. Tsai, C. L., Wang, C. H., Pan, C. Y., Chen, F. C., Huang, T. H. and Chou, F. Y. 2014. Executive function and endocrinological responses to acute resistance exercise. Front. Behav. Neurosci. 8, 262. 

  68. Vayman, S., Ying, Z. and Gomez-Pinilla, F. 2004. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580-2590. 

  69. Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., Szabo, A., Phillips, S. M., Wojcicki, T. R., Mailey, E. L., Olson, E. A., Gothe, N., Vieira-Potter, V. J., Martin, S. A., Pence, B. C., Cook, M. D., Woods, J. A., McAuley, E. and Kramer, A. F. 2013. Neurobiologycal markers of exercise-related brain plasticity in older adults. Brain Behav. Immun. 28, 90-99. 

  70. Wagner P. D., Olfert, I. M., Tang, K. and Breen, E. C. 2006. Muscle-targeted deletion of VEGF and exercise capacity in mice. Respir. Physiol. Neurobiol. 151, 159-166. 

  71. Wahl, P., Mathes, S., Achtzehn, S., Bloch, W. and Mester, J. 2014. Active vs. passive recovery during high-intensity training influences hormonal response. Int. J. Sport Med. 35, 583-589. 

  72. Wahl, P., Zinner, C., Achtzehn, S., Behringer, M., Bloch, W. and Mester, J. 2011. Effects of acid-base balance and high or low intensity exercise on VEGF and bFGF. Eur. J. Appl. Physiol. 111, 1405-1413. 

  73. Wahl, P., Zinner, C., Achtzehn, S., Bloch, W. and Mester, J. 2010. Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm. IGF Res. 5, 380-385. 

  74. Wang, H., Ward, N., Boswell, M. and Katz, D. M. 2006. Secretion of brain-derived neurotrophic factor from brain microvascular endothelial cells. Eur. J. Neurosci. 23, 1665-1670. 

  75. Whiteman, A. S., Young, D. E., He, X., Chen, T. C. and Wagenaar, R. C. 2014. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav. Brain Res. 259, 302-312. 

  76. Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A. and Knecht, S. 2007. High impact running improves learning. Neurobiol. Learn Mem. 87, 597-609. 

  77. Wyss, M. T., Jolivet, R., Buck, A., Magistretti, P. J. and Weber, B. 2011. In vivo evidence for lactate as a neuronal energy source. J. Neurosci. 31, 7477-7485. 

  78. Yang, J., Ruchti, E., Petit, J. M., Jourdain, P., Grenningloh, G., Allaman, I. and Magistretti, P. J. 2014. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. 111, 12228-12233. 

  79. Zanconato, S., Moromisato, D. Y., Moromisato, M. Y., Woods, J., Brasel, J. A., Leroith, D., Roberts, C. T. and Cooper, C. M. 1994. Effect of training and growth hormone suppression on insulin-like growth factor I mRNA in young rats. J. Appl. Physiol. 76, 2204-2209. 

  80. Zoladz, J. A., Pilic, A., Majerczak, J., Grandys, M., Zapart-Bukowska, J. and Duda, K. 2008. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J. Physiol. Pharmacol. 59, 119-132. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로