$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

해안지역 암반대수층의 침누수량 평가
Evaluation of Percolation Rate of Bedrock Aquifer in Coastal Area 원문보기

Journal of nuclear fuel cycle and waste technology = 방사성폐기물학회지, v.14 no.1, 2016년, pp.21 - 33  

이정환 (한국원자력환경공단) ,  정해룡 (한국원자력환경공단) ,  박주완 (한국원자력환경공단) ,  윤정현 (한국원자력환경공단) ,  정재열 (한국원자력환경공단) ,  박선주 ((주)넥스지오) ,  전성천 ((주)지오그린21)

Abstract AI-Helper 아이콘AI-Helper

Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evap...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 국내의 연구 현황으로는, 물수지 분석을 통한 소유역 지하수 함양량 산정 연구[16, 17], 지하수 함양량 모델 개발 연구[18, 19], GIS를 이용한 지구통계학적 연구[20, 21] 등 다양한 연구들이 진행되고 있으나, 해안지역에서 지하수 순환 특성 연구는 상대적으로 미진한 실정이다[22]. 따라서, 본 연구는 해안지역에 위치한 소유역에 대해서 식생, 수리지질, 토양 특성, 기후 특성 등을 분석하고, 물수지 분석법을 활용하여 다양한 인자들을 고려한 지하수침누 특성을 규명하고자 한다.
  • 본 연구는 해안지역에 위치한 소유역에 대해서 식생, 수리지질, 토양 특성, 기후 특성 등을 분석하고, 물수지 분석법을 이용한 지하수 침누 특성을 분석하여 이와 관련된 다양한 인자들을 고려한 지하수 순환 특성을 규명하고자 하였다.

가설 설정

  • P : 누적강수량(mm)이다.
  • 는 규제 부피에서 지하수 저류량 변화(유효 지하수 함양량)이다[17]. 기저유출량과 지하수 저류량 변화량을 본 연구에서는 총 침누수량(총 지하수 함양량)으로 가정하여 해석하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
방사성폐기물 처분시설 부지에 대해서는 지하수 유동 특성을 명확히 규명해야 하는 이유? 지하수는 폐기물 내부에서 오염된 방사성 핵종의 용해, 이동, 및 운반 매개체로서 매우 중요하기 때문에 방사성폐기물 처분시설 부지에 대해서는 지하수 유동 특성을 명확히 규명하는 것이 필수적이다[1]. 지하수 유동 특성을 조절하는 인자들로는 퇴적층의 조직, 간극 부피, 지질 구조, 지질 특성 등이 포함된다[2, 3].
지하수 유동 특성을 조절하는 인자는? 지하수는 폐기물 내부에서 오염된 방사성 핵종의 용해, 이동, 및 운반 매개체로서 매우 중요하기 때문에 방사성폐기물 처분시설 부지에 대해서는 지하수 유동 특성을 명확히 규명하는 것이 필수적이다[1]. 지하수 유동 특성을 조절하는 인자들로는 퇴적층의 조직, 간극 부피, 지질 구조, 지질 특성 등이 포함된다[2, 3]. 그러나, 특정한 면적 영역의 경우, 지하수 유동은 수리수문학적 순환의 한 부분으로 고려되어 해석될 수 있으며, 강우량, 토양 함수 특성, 하천 유출량, 온도, 토지이용도 등의 지형적, 지질학적, 기후적인 조건을 반영한 지하수 순환 특성으로 결정될 수 있다[4].
증발산은 기상학적 인자 이외에도 무엇에 영향을 받는가 증발산(evapotranspiration)은 수면으로부터의 증발(evaporation)과 식물로부터의 증산(transpiration)을 합한 값이며, 수분이 기체 상태로 대기에 환원되는 모든 것을 포함한 것이다. 이는 기상학적 인자 이외에도, 식물의 종류, 색깔의 농도, 식물의 밀도, 성장 속도, 잎 표면의 크기 등의 식물 요소뿐만 아니라 토양의 공극률, 수리전도도, 입자의 크기, 토양의 함수율 등에 직접적으로 영향을 받는 인자이다[26]. 증발산량은 직접적인 측정이나 간접적인 계산에 의해서 결정할 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (48)

  1. S.H. Ji and Y.K. Koh, "The state-of-the art of groundwater flow modeling for safety assessment of a radwaste repository", J. of the Geological Society of Korea, 46(2), 181-195 (2010). 

  2. K.W. Park, S.H. Ji, Y.K. Koh, G.Y. Kim, and J.K. Kim, "Numerical simulation of groundwater flow in LILW Repository site: II. Input parameters for safety assessment", J. of the Korean Radioactive Waste Society, 6(4), 283-296 (2008). 

  3. C.S. Oh and J.M. Kim, "Three-dimensional numerical simulation of groundwater flow and salt and radionuclide trasport at a low and intermediate level radioactive waste disposal site in Gyeongju, Korea", J. of Geological Society of Korea, 44(4), 489-505 (2008). 

  4. R.H. Healy, Estimating groundwater recharge, Cambridge University Press, New York (2010). 

  5. International Atomic Energy Agency, Characterization of groundwater flow for near surface disposal facilities, IAEA-TECDOC-1199, IAEA, Vienna (2001). 

  6. E. Langsholt, "A water balance study in lateritic terrain", Hydrological process, 6, 11-27 (1992). 

  7. J.A. Engott and T.T. Vana, Effects of agricultural landuse changes and rainfall on groundwater recharge in central and west Maui, Hawaii, 1926-2004, US Geological Survey Scientific Investigations Report 2007-5103 (2007). 

  8. J. Sheffield, C.R. Ferguson, T.J. Troy, E.T. Wood, M.F. McCabe, April 3, 2009. "Closing the terrestrial water budget from satellite remote sensing", Geophysical Research Letters, 36(7), DOI:10.1029/2009GL037338 (2009). 

  9. G.H. Leavesley, R.W. Lichty, B.M. Troutman, and L.G. Saindon, Precipitation-runoff modeling system: user's manual, US Geological Survey Water-Resources Investigations Report 83-4238, 1-2 (1983). 

  10. L. Zhang, W.R. Dawes, T.J. Hatton, P.H. Reece, G.T.H. Beale, and I. Pacher, "Estimation of soil moisture and groundwater recharge using the TOPOG IRM model", Water Resources Research, 35, 136-138 (1999). 

  11. C.R. Tiedeman, J.M. Kernodle, and D.P. McAda, Application of nonlinear-regression methods to a groundwater flow model of the Albuquerque Basin, New Mexico, US Geological Survey Water-Resources Investigations Report 98-417, 1-2 (1998). 

  12. C.H. Lee, W.P. Chen, and R.H. Lee, "Estimation of groundwater recharge using water balance coupled with base-flow-record and stabe-base-flow analysis", Environmental Geology, 51, 73-82 (2006). 

  13. W.R. Dripps and K.R. Bradbury, "A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas", Hydrogeology Journal, 15(3), 433-444 (2007). 

  14. I.S. Zektser, V.A. Ivanov, and A.V. Meskheteli, "The problem of direct groundwater discharge to the seas", J. of Hydrology, 20, 1-36 (1973). 

  15. B. Sekulic and A. Vertacnik, "Balance of average annual fresh water inflow into the Adriatic Sea", Water Resources Development, 12, 89-97 (1996). 

  16. J.H. An, S.Y. Hamm, J.H. Lee, N.H. Kim, D.B. Yang, and J.G. Hwang, "Estimation of groundwater recharge in Junggwae-Boeun Area in Ulsan City using the water balance and hydrogeological analyses", Economic and Environment Geology, 41(4), 427-442 (2008). 

  17. N.H. Kim, S.Y. Hamm, T.Y. Kim, J.Y. Cheong, J.H. An, H.T. Jeon, and H.S. Kim, "Estimation of groundwater storage change and its relationship with geology in Eonyang Area, Ulsan Megacity", The J. of Engineering Geology, 18(3), 263-276 (2008). 

  18. H. Yoon, E. Park, G.B. Kim, K. Ha, P. Yoon, and S.H. Lee, "A method to filter out the effect of river stage fluctuations using time series model for forecasting groundwater level and its application to groundwater recharge estimation", J. of Soil and Groundwater Environment, 20(3), 74-82 (2015). 

  19. J.W. Cho, and E. Park, "A study on delineation of groundwater recharge rate using water-table fluctuation and unsaturate soil water content model", J. of Soil and Groundwater Environment, 13(1), 67-76 (2008). 

  20. I.M. Chung, H. Na, D. Lee, N.W. Kim, J. Lee, and J.M. Lee, "Spatio-temporal variations in groundwater recharge in the Jincheon Region", The J. of Engineering Geology, 21(4), 305-312 (2011). 

  21. S.H. Cho, M. Cho, S.H. Moon, Y. Kim, and K.S. Lee, "Estimation of groundwater recharge in a district-scale area using 18O tracer", J. of Geological Society of Korea, 44(3), 331-340 (2008). 

  22. Y.S. Gwak, S.H. Kim, Y.W. Lee, B.K. Khim, S.Y. Hamm, and S.W. Kim, "Estimation of submarine groundwater discharge in the Il-Gwang watershed using water budget analysis and 222Rn mass balance", Hydrological Processes, 28, 3761-3775 (2014). 

  23. J.H. Hwang, Y.H. Kihm, Y.B. Kim, and K.Y. Song, "Teriary hydroexplosion at Bonggil-ri, Yangbuk-myeon, Gyeongju", J. of Geological Society of Korea, 43(4), 453-462 (2007). 

  24. J.H. Jeong, S.P. Jang, H.I. Kim, Y.T. Jeong, K.S. Heo, and H. Park, "Classification of hydrologic soil groups for determining the infiltration rate", J. of the Korea Society of Agricultural Engineers, 37(6), 12-32 (1995). 

  25. R.W. Healy, C.A. Rice, T.T. Bartos, and M.P. Mckinley, "Infiltration from an impoundment for coal-bed natural gas, Powder river Basin, Wyoming: Evolution of water and sediment chemistry", Water Resources Research, 44(6) (2008). 

  26. C.W. Thornthwaite, "Report of the committee on transpiration and evaporation", Transactions, American Geophysical Union, 25(5), 683-693 (1944). 

  27. L. Turc, "Evaluation des besoins en eau d'irrigation, vapotranspiration potentielle, formulation simplifiet mise", jour. Ann. Agron., 12, 13-49 (1963). 

  28. H.L. Penman, "Natural evapotranspiration from open water, bare soil, and grass", Mathematical and Physical Sciences, 193, 120-145 (1948). 

  29. H.F. Blaney and W.D. Criddle, Determining water requirements in irrigated areas from climatologicaland irrigation data, USDA(SCS) TP-96 (1950). 

  30. J.L. Monteith, J.L. Evaporation and environment, In Fogg, G.E., ed., symposium of the Society for Experimental Biology, The State and Movement of Water in Living Organisms, 19, Academic Press, Inc., New York (1965). 

  31. S.Y. Hamm, J.Y. Cheong, H.S. Kim, G.S. Hahn, and S.H. Ryu, "A study on groundwater flow modeling in the fluvial aquifer adjacent to the Nakdong River, Book-Myeon area, Changwon City", Economic and Environment Geology, 37(5), 499-508 (2004). 

  32. S.Y. Hamm, J.Y. Cheong, H.S. Kim, G.S. Hahn, and Y.H. Cha, "Grounmdwater flow modeling in a riverbank filtration area, Daesan-Myeon, Changwon City", Economic and Environment Geology, 38(1), 67-78 (2005). 

  33. J.H. Lee, S.Y. Hamm, J.Y. Cheong, J.H. Jeong, N.H. Kim, K.S. Kim, and H.T. Jeong, "Estimation of groundwater flow rate into Jikri tunnel using groundwater fluctuation data and modeling", J. of Soil and Groundwater Environment, 14(5), 29-40 (2009). 

  34. J.H. Lee, S.Y. Hamm, J.Y. Cheong, J.H. Jeong, K.S. Kim, N.H. Kim, and G.B. Kim, "Numeriacal simulation of the change in groundwater level due to construction of the Giheung tunnel", The J. of Engineering Geology, 20(4), 449-459 (2008). 

  35. J.H. Lee, S.Y. Hamm, C.M. Lee, J.J. Lee, H.S. Kim, and G.B. Kim, "Numerical simulation of groundwater system change in a riverside area due to the construction of an artificial structure", The J. of Engineering Geology, 22(3), 263-274 (2012). 

  36. C.W. Thornthwaite, J.R. Mather, and D.B. Carter, "Instructions and tables for computing potential evapotranspiration and the water balance", Drexel Institute of Technology, Philadelphia. Publications in climatology, 10(3), 185-311 (1957). 

  37. N.K. Goel, R.S. Kurothe, B.S. Mathur, and R.M. Vogel, "A derived flood frequency distribution for correlated rainfall intensity and duration", J. of Hydrology, 228, 56-67 (2000). 

  38. R.L. Linsley, M.A. Kohler, J.L.H. Paulhus, Applied hydrology, McGraw-Hill, Inc., New York (1949). 

  39. H.J. Morel-Seytoux and J.P. Verdin, (1981) Extension of the soil conservation service rainfall-runoff methodology for ungaged watersheds, Report FHWA/RD-81/060 Offices of Research & Development Environmental Division, U.S. Federal Highway Administration (1981). 

  40. S.K. Mishra and V.P. Singh, "Catchment area-based evaluation of the AMC - dependent SCS-CN-based rainfall-runoff models", Hydrological Processes, 19, 2701-2718 (2005). 

  41. Y.M. Mustafa, M.S.M. Amin, T.S. Lee, and A.R.M. Shariff, "Evaluation of land development impact on a tropical watershed hydrology using remote sensing and GIS", J. of Spatial Hydrology, 5(2), 16-30 (2005). 

  42. I.h. Choi and N.C. Woo, "Limits of the NRCS-CN method to assess groundwater recharge", Journal of Soil and Groundwater Environment, 12(5), 1-6 (2007). 

  43. R.H. McCuen, A guide to hydrologic analysis using SCS methods, Prentice Hall, Englewood Cliffs (1982). 

  44. J.C. Davis, Statistices and data analysis in geology, John Wiley & Sons, New York (2002). 

  45. Korea Meteorological Administration. July 1 2015. "National Climate Data Service System: Climate data Option." NCDSS. Accessed Apr. 1 2015. Available from: http://sts.kma.go.kr/jsp/home/ contents/climate-Data/obs/bsValSearch.doMNUMNU. 

  46. C.W. Fetter, Applied hydrogeology, Prentice Hall Inc., New Jersey (2011). 

  47. S.I. Ok, S.Y. Hamm, Y.W. Lee, E.J. Cha, S.H. Kim, I.S. Kim, and B.K. Khim, "Characterizing groundwater discharge and radon concentration in coastal waters, Busan City", J. of Soil and Groundwater Environment, 16(5), 53-66 (2011). 

  48. B.S. Choi and J.G. Ahn, (1998) A study on the estimation of regional groundwater recharge ratio, J. of Soil and Groundwater Environment, 5, 57-65 (1998). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로