$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수중 환경에서의 위상 지연을 이용한 음향 신호의 시간 차이 추정 기법
Estimation Technique of Time Difference of Acoustic Signal by phase delay in Underwater Environments 원문보기

한국전자통신학회 논문지 = The Journal of the Korea Institute of Electronic Communication Sciences, v.11 no.4, 2016년, pp.365 - 372  

이영필 (레드원테놀러지) ,  문용선 (순천대학교 정보통신공학부) ,  고낙용 (조선대학교 제어계측로봇공학과) ,  최현택 ,  이정구 ,  배영철 (전남대학교 전기.전자통신.컴퓨터공학부)

초록

최근에 UWAC에 대한 연구가 많은 연구자와 학자들에 의해 연구되고 있다. 수중 환경에서 두 신호 사이의 시간 차이 추정 기법은 배경이 없는 영역에서 도착 시간 추정, 상관관계 추정, 그리고 시간 지연 추정의 3가지가 제시되어 있다. 이 논문에서는 위상 지연에 기반하여 두 신호 사이에서의 시간 차이 추정 기법을 제시한다.

Abstract AI-Helper 아이콘AI-Helper

Recently, UWAC(: UnderWater Acoustic Communication) has been studied by many scholars and researchers. There are several method to estimate the time-difference between the two signals such estimating as the arrival time of the first non-background segment in both signals and calculate the temporal d...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this paper, we present estimating method by the phase delay to infer the time difference in two signals.
  • In this paper, we presented estimating method by the phase delay to infer the time difference in two signals.
본문요약 정보가 도움이 되었나요?

참고문헌 (16)

  1. A. Ranjan and Ashish Ranjan, "Underwater Wireless Communication Network," Advance in Electronic and Electric Engineering, vol. 3, no. 1, 2013, pp. 41-46. 

  2. P. J. Gendron, "Orthogonal frequency division multiplexing with on-off keying: Noncoherent performance bounds, receiver design and experimental results," U.S. Navy J. of Underwater Acoustics, vol. 56, no. 2, 2006, pp. 267-300. 

  3. M. Stojanovic, "Low complexity OFDM detector for underwater channels," In Proc. Of MTS/IEEE OCEANS Conf., Boston, USA, Sept., 2006. 

  4. B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, "Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts," IEEE J. of Oceanic Engineering, vol. 33, no. 2, Apr. 2008, pp. 198-209. 

  5. Y. Labrador, Masoumeh Karimi, Deng Pan, and Jerry Miller, "Modulation and Error Correction in the Underwater Acoustic Communication Channel," Int. J. of Computer Science and Network Security, vol. 9, no. 7, July 2009, pp. 123-130. 

  6. H. Kang and W. Han, "Performance analysis of Variable Rate Multi-carrier CDMA under an underwater acoustic channel," J. of Korean Institute of Intelligent Systems, vol. 7, no. 1, 2012. pp. 33-38. 

  7. Y. Im and H. Kang, "Performance analysis of an adaptive OFDM over an underwater acoustic channel," J. of Korean Institute of Intelligent Systems, vol. 5, no. 5, 2010, pp. 509-515. 

  8. D. Lee and Y. Yang, "Two-Dimensional Localization Problem under non-Gaussian Noise in Underwater Acoustic Sensor Networks," J. of the Korean Institute of Intelligent Systems, vol. 23, no. 5, 2013. pp. 418-422. 

  9. S. Noh, N. Ko, and H. Choi, "Implementation and Performance Comparison for an Underwater Robot Localization Methods Using Seabed Terrain Information," J. of the Korean Institute of Intelligent Systems, vol. 25, no. 1, 2015, pp. 70-77. 

  10. H. Son, J. Park, and Y. Joo, "Intelligent Range Decision Method for Figure of Merit of Sonar Equation," J. of the Korean Institute of Intelligent Systems, vol. 23, no . 4, 2013, pp. 304-309. 

  11. D. Shin, S. You Na, and J. Kim, "Fuzzy Distance Estimation for a Fish Robot," Int. J. of Fuzzy Logic and Intelligent Systems, vol. 5, no. 4, 2005, pp. 316-321. 

  12. H. Kang and W. Han, "Performance analysis of Variable Rate Multi-carrier CDMA under an underwater acoustic," J. of the Korea Institute of Electronics Communications Sciences, vol. 7, no. 1, 2012, pp. 33-38. 

  13. Y. Im, P. Lim, J. Lee, and C. Kim, "Interface Effect Analysis between Undersea Fiber Optic Cable and Underwater Acoustic channel," J. of the Korea Institute of Electronics Communications Sciences, vol. 10, no. 9, 2015, pp. 979-986. 

  14. Y. Lee, Y. Moon, N. Ko, H. Choi, L. Huang, and Y. Bae, "Measurement of DS-CDMA Propagation Distance in Underwater Acoustic Communication Considering Attenuation and Noise," Int. J. of Fuzzy Logic and Intelligent Systems, vol. 15, no. 1, 2015, pp. 25-26. 

  15. Y. Lee, Y. Moon, N. Ko, H.Choi, L. Huang, and Y. Bae, "DSSS-based Channel Access Technique DS-CDMA for Underwater Acoustic Transmission," Int. J. of Fuzzy Logic and Intelligent Systems, vol. 15, no. 1, 2015, pp. 53-59. 

  16. Y. Im and H,Kang, "Performance analysis of an adaptive OFDM over an underwater acoustic channel," J. of the Korea Institute of Electronics Communications Sciences, vol. 5, no. 6, 2010, pp. 509-515. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로