$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

자외선 조사와 병행된 녹차 식이 공급이 무모생쥐의 표피 산도 관련 인자 함량 및 젖산 탈수소 효소의 단백질 발현과 활성에 미치는 영향
Dietary effect of green tea extract on epidermal levels of skin pH related factors, lactate dehydrogenase protein expression and activity in UV-irradiated hairless mice 원문보기

Journal of nutrition and health, v.49 no.2, 2016년, pp.63 - 71  

이보민 (경희대학교 동서의학대학원 의학영양학과) ,  김종례 (경희대학교 동서의학대학원 의학영양학과) ,  황재성 (경희대학교 생명자연과학연구원) ,  조윤희 (경희대학교 동서의학대학원 의학영양학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 자외선 조사와 함께 녹차 추출물 식이를 10주간 공급한 무모생쥐 (GTE군)의 표피 pH 관련 인자의 함량과 LDH 효소의 단백질 발현 및 활성 변화를 자외선 비조사군 (UV-군) 및 자외선 조사군 (UV+군)과 비교 분석하였으며 결과는 다음과 같다. UV+군의 피부 pH는 UV-군보다 유의적으로 증가한 반면 GTE군의 피부 pH는 UV+군에 비해 감소하였으며 그 감소 정도는 UV-군과 유사하였다. UV+군의 젖산 함량은 UV-군에 비해 현저히 감소한 반면 GTE군의 젖산 함량은 UV+군에 비해 증가하였다. UV+군과 UV-군의 총 유리아미노산 함량은 군간 유사하였으나 GTE군의 총 유리아미노산 함량은 UV-군에 비해 현저히 증가하였다. UV+군 및 GTE군의 총 유리지방산 함량은 군간 차이 없이 모두 UV-군에 비해 감소하였으며, GTE군에서 주요 유리지방산인 PA, OA 및 LA의 개별 함량은 모두 UV-군과 유사하거나 감소하였다. UV+군의 LDH 단백질 발현 및 활성은 UV-군에 비해 유의적으로 감소한 반면, GTE군의 LDH 단백질 발현 및 활성은 모두 UV+군보다 증가하였으며 특히 LDH 활성의 증가 정도는 UV-군과 유사하였다. 결론적으로 자외선 조사와 병행된 녹차 추출물 식이 공급은 LDH 발현 및 활성 증가와 함께 젖산 과 총 유리아미노산 함량을 증가시켰으며 궁극적으로 자외선 조사에 의해 증가된 피부 pH를 정상화시켰다.

Abstract AI-Helper 아이콘AI-Helper

Purpose: Skin pH, an indicator of skin health, is maintained by various organic factors, which include lactate, free amino acid (FAA), and free fatty acid (FFA). As skin ages or with illness, skin pH becomes less acidic, and functional food has been developed to maintain the acidic pH of skin. In th...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 12-14 선별된 차 잎을 고온에서 가열하여 산화와 발효를 억제한 녹차는 카테킨의 일종인 epigallocatechin-3-gallate (EGCG)가 주요 활성 물질로 알려져 있으며, 콜라겐 생성 증가, 자외선에 의한 표피 과증식 방지 등의 피부 노화 개선 효능이 여러 연구에서 보고되었으나, 14-16 피부 pH 개선 효능 및 pH 관련 여러 인자들 함량 변화에 대한 연구는 미흡한 실정이다. 따라서 본 연구에서는 무모생쥐에 자외선 조사와 병행하여 녹차를 식이 공급하고, 녹차 섭취가 표피의 pH을 비롯하여 젖산, 유리아미노산, 유리지방산의 함량 및 LDH의 단백질 발현과 활성에 미치는 영향을 알아보고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
피부 산도를 결정하는 요인은 무엇이 있는가? 피부 건강을 나타내는 주요 지표인 피부 산도(pH)는 피부의 최외층인 표피에서 생성되는 젖산 (lactate), 유리아미노산 (free amino acid, FAA), 유리지방산 (free fatty acid, FFA) 등 여러 인자들의 전체 함량에 의해 결정된다.1-3 이들 인자 중 젖산은 피부 pH의 주요 결정 인자로, 젖산 생성 효소인 젖산 탈수소 효소 (Lactate dehydrogenase, LDH)는 표피에서 호기적인 상태에서도 강한 활성을 갖는 것으로 알려져 있다.
피부 산도 증가로 생기는 문제는 무엇이 있는가? 1 또한 표피의 여러 유리지방산에서 초래되는 약산성이 피부 산도 유지에 기여 하는 것으로 알려져 있다. 건강한 피부는 pH 4~6 범위의 약산성 pH를 유지하는 반면,1,3 아토피 피부염, 여드름 등의 피부 질환 발병 시 피부 pH 증가와 함께 약산성의 환경에서 활성을 나타내는 피부 장벽의 주요 지질인 세라마이드 생성 관련 효소인 glucocerebrosidase 및 sphingomyelinase의 활성이 저하된다. 3,5,6 또한 노화가 진행되는 피부에서는 피부 pH 증가와 함께 히알루론산, 콜라겐 등의 보습 및 주름 생체지표 활성이 저하된다.7
피부 pH의 주요 결정 인자는 무엇인가? 피부 건강을 나타내는 주요 지표인 피부 산도(pH)는 피부의 최외층인 표피에서 생성되는 젖산 (lactate), 유리아미노산 (free amino acid, FAA), 유리지방산 (free fatty acid, FFA) 등 여러 인자들의 전체 함량에 의해 결정된다.1-3 이들 인자 중 젖산은 피부 pH의 주요 결정 인자로, 젖산 생성 효소인 젖산 탈수소 효소 (Lactate dehydrogenase, LDH)는 표피에서 호기적인 상태에서도 강한 활성을 갖는 것으로 알려져 있다. 4 표피의 유리아미노산은 약산성 아미노산인 glutamate 및 histidine이 40% 이상을 차지하는 반면 methionine, phenylalanine, valine, isoleucine, leucine 및 cysteine은 거의 존재하지 않는다.
질의응답 정보가 도움이 되었나요?

참고문헌 (49)

  1. Rippke F, Schreiner V, Schwanitz HJ. The acidic milieu of the horny layer: new findings on the physiology and pathophysiology of skin pH. Am J Clin Dermatol 2002; 3(4): 261-272. 

  2. Nakagawa N, Sakai S, Matsumoto M, Yamada K, Nagano M, Yuki T, Sumida Y, Uchiwa H. Relationship between NMF (lactate and potassium) content and the physical properties of the stratum corneum in healthy subjects. J Invest Dermatol 2004; 122(3): 755-763. 

  3. Elias PM. Stratum corneum acidification: how and why? Exp Dermatol 2015; 24(3): 179-180. 

  4. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci 2006; 28(5): 359-370. 

  5. Ali SM, Yosipovitch G. Skin pH: from basic science to basic skin care. Acta Derm Venereol 2013; 93(3): 261-267. 

  6. Choi EH, Man MQ, Xu P, Xin S, Liu Z, Crumrine DA, Jiang YJ, Fluhr JW, Feingold KR, Elias PM, Mauro TM. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol 2007; 127(12): 2847-2856. 

  7. Rabe JH, Mamelak AJ, McElgunn PJ, Morison WL, Sauder DN. Photoaging: mechanisms and repair. J Am Acad Dermatol 2006; 55(1): 1-19. 

  8. El-Domyati M, Attia S, Saleh F, Brown D, Birk DE, Gasparro F, Ahmad H, Uitto J. Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol 2002; 11(5): 398-405. 

  9. Bissett DL, Hannon DP, Orr TV. An animal model of solar-aged skin: histological, physical, and visible changes in UV-irradiated hairless mouse skin. Photochem Photobiol 1987; 46(3): 367-378. 

  10. Holleran WM, Uchida Y, Halkier-Sorensen L, Haratake A, Hara M, Epstein JH, Elias PM. Structural and biochemical basis for the UVB-induced alterations in epidermal barrier function. Photodermatol Photoimmunol Photomed 1997; 13(4): 117-128. 

  11. Sterenborg HJ, de Gruijl FR, van der Leun JC. UV-induced epidermal hyperplasia in hairless mice. Photodermatol 1986; 3(4): 206-214. 

  12. Sime S, Reeve VE. Protection from inflammation, immunosuppression and carcinogenesis induced by UV radiation in mice by topical Pycnogenol. Photochem Photobiol 2004; 79(2): 193-198. 

  13. Kang TH, Park HM, Kim YB, Kim H, Kim N, Do JH, Kang C, Cho Y, Kim SY. Effects of red ginseng extract on UVB irradiationinduced skin aging in hairless mice. J Ethnopharmacol 2009; 123(3): 446-451. 

  14. Pazyar N, Feily A, Kazerouni A. Green tea in dermatology. Skinmed 2012; 10(6): 352-355. 

  15. Vayalil PK, Mittal A, Hara Y, Elmets CA, Katiyar SK. Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. J Invest Dermatol 2004; 122(6): 1480-1487. 

  16. Li YH, Wu Y, Wei HC, Xu YY, Jia LL, Chen J, Yang XS, Dong GH, Gao XH, Chen HD. Protective effects of green tea extracts on photoaging and photommunosuppression. Skin Res Technol 2009; 15(3): 338-345. 

  17. Min J, Lee Y, Han SM, Choi Y. Dietary effect of royal jelly supplementation on epidermal levels of hydration, filaggrins, free amino acids and the related enzyme expression in UV irradiated hairless mice. Korean J Nutr 2013; 46(2): 109-118. 

  18. Jeon SE, Choi-Kwon S, Park KA, Lee HJ, Park MS, Lee JH, Kwon SB, Park KC. Dietary supplementation of (+)-catechin protects against UVB-induced skin damage by modulating antioxidant enzyme activities. Photodermatol Photoimmunol Photomed 2003; 19(5): 235-241. 

  19. Takami S, Imai T, Hasumura M, Cho YM, Onose J, Hirose M. Evaluation of toxicity of green tea catechins with 90-day dietary administration to F344 rats. Food Chem Toxicol 2008; 46(6): 2224-2229. 

  20. Senadheera D, Krastel K, Mair R, Persadmehr A, Abranches J, Burne RA, Cvitkovitch DG. Inactivation of VicK affects acid production and acid survival of Streptococcus mutans. J Bacteriol 2009; 191(20): 6415-6424. 

  21. Nachat R, Mechin MC, Takahara H, Chavanas S, Charveron M, Serre G, Simon M. Peptidylarginine deiminase isoforms 1-3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol 2005; 124(2): 384-393. 

  22. Hamanaka S, Hara M, Nishio H, Otsuka F, Suzuki A, Uchida Y. Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J Invest Dermatol 2002; 119(2): 416-423. 

  23. Uchida Y, Hara M, Nishio H, Sidransky E, Inoue S, Otsuka F, Suzuki A, Elias PM, Holleran WM, Hamanaka S. Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. J Lipid Res 2000; 41(12): 2071-2082. 

  24. Tang W, Ziboh VA. Reversal of epidermal hyperproliferation in essential fatty acid deficient guinea pigs is accompanied by rapid generation of inositol triphosphate. Arch Dermatol Res 1988; 280(5): 286-292. 

  25. Takagi Y, Nakagawa H, Yaginuma T, Takema Y, Imokawa G. An accumulation of glucosylceramide in the stratum corneum due to attenuated activity of beta-glucocerebrosidase is associated with the early phase of UVB-induced alteration in cutaneous barrier function. Arch Dermatol Res 2005; 297(1): 18-25. 

  26. Beamer CA, Holian A. Silica suppresses Toll-like receptor ligandinduced dendritic cell activation. FASEB J 2008; 22(6): 2053-2063. 

  27. Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, Elias PM. Human stratum corneum lipids: characterization and regional variations. J Lipid Res 1983; 24(2): 120-130. 

  28. Cook HW. Fatty acid desaturation and chain elongation in eukaryotes. In: Vance DE, Vance JE, editors. Biochemistry of Lipids and Membranes. Menlo Park, CA: Benjamin/Cummings Pub. Co.; 1985. p.181-203. 

  29. Khan SG, Katiyar SK, Agarwal R, Mukhtar H. Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Res 1992; 52(14): 4050-4052. 

  30. Kim EJ, Jin XJ, Kim YK, Oh IK, Kim JE, Park CH, Chung JH. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging. J Dermatol Sci 2010; 57(1): 19-26. 

  31. Bhawan J, Andersen W, Lee J, Labadie R, Solares G. Photoaging versus intrinsic aging: a morphologic assessment of facial skin. J Cutan Pathol 1995; 22(2): 154-159. 

  32. Hsu S. Green tea and the skin. J Am Acad Dermatol 2005; 52(6): 1049-1059. 

  33. Kim DS, Park SH, Kwon SB, Li K, Youn SW, Park KC. (-)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesis via decreased MITF production. Arch Pharm Res 2004; 27(3): 334-339. 

  34. Katiyar SK, Elmets CA. Green tea polyphenolic antioxidants and skin photoprotection (Review). Int J Oncol 2001; 18(6): 1307-1313. 

  35. Di Cerbo A, Laurino C, Palmieri B, Iannitti T. A dietary supplement improves facial photoaging and skin sebum, hydration and tonicity modulating serum fibronectin, hyaluronic acid and carbonylated proteins. J Photochem Photobiol B 2015; 144: 94-103. 

  36. Kim H, Park KH, Yeo JH, Lee KG, Jeong DH, Kim SH, Cho Y. Dietary effect of silk protein sericin or fibroin on plasma and epidermal amino acid concentration of NC/Nga mice. Korean J Nutr 2006; 39(6): 520-528. 

  37. Levin J, Maibach H. Human skin buffering capacity: an overview. Skin Res Technol 2008; 14(2): 121-126. 

  38. Ronquist G, Andersson A, Bendsoe N, Falck B. Human epidermal energy metabolism is functionally anaerobic. Exp Dermatol 2003; 12(5): 572-579. 

  39. Lewis C Jr, Schmitt M, Hershey FB. Heterogeneity of lactic dehydrogenase of human skin. J Invest Dermatol 1967; 48(3): 221-225. 

  40. Huang D, Jungmann RA. Transcriptional regulation of the lactate dehydrogenase A subunit gene by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Mol Cell Endocrinol 1995; 108(1-2): 87-94. 

  41. Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurorescue against $A{\beta}$ toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J 2003; 17(8): 952-954. 

  42. Yosipovitch G, Tur E, Morduchowicz G, Boner G. Skin surface pH, moisture, and pruritus in haemodialysis patients. Nephrol Dial Transplant 1993; 8(10): 1129-1132. 

  43. Scott IR, Harding CR, Barrett JG. Histidine-rich protein of the keratohyalin granules: source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta 1982; 719(1): 110-117. 

  44. Rawlings AV, Scott IR, Harding CR, Bowser PA. Stratum corneum moisturization at the molecular level. J Invest Dermatol 1994; 103(5): 731-741. 

  45. Thulin CD, Walsh KA. Identification of the amino terminus of human filaggrin using differential LC/MS techniques: implications for profilaggrin processing. Biochemistry 1995; 34(27): 8687-8692. 

  46. McGrath JA, Uitto J. The filaggrin story: novel insights into skinbarrier function and disease. Trends Mol Med 2008; 14(1): 20-27. 

  47. Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol 2003; 121(2): 345-353. 

  48. Tyrrell RM. Activation of mammalian gene expression by the UV component of sunlight--from models to reality. BioEssays 1996; 18(2): 139-148. 

  49. Wang X, Song KS, Guo QX, Tian WX. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fattyacid synthase. Biochem Pharmacol 2003; 66(10): 2039-2047. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로