$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성
The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology) 원문보기

대한환경공학회지 = Journal of Korean Society of Environmental Engineers, v.38 no.4, 2016년, pp.201 - 209  

박준규 (충북대학교 환경공학과) ,  전동걸 ((주)정봉) ,  이범 (충북대학교 환경공학과) ,  전항배 (충북대학교 환경공학과)

초록
AI-Helper 아이콘AI-Helper

Glucose ($C_6H_{12}O_6$)의 이론적인 최대 메탄수율은 표준상태(1 atm, $0^{\circ}C$)를 기준으로 0.35 L $CH_4/g$ COD이지만, 전통적인 혐기성소화조에서 유기물이 메탄으로 전환되는 양은 연구의 방법이나 유기물의 종류에 따라 매우 다양하게 보고되고 있으며, 대부분의 연구실 규모 실험에서 안정화 후 메탄 수율은 0.35 L $CH_4/g$ COD 이하로 나타난다. 최근, 미생물 전기화학 기술(Microbial Electrochemical Technology, MET)은 지속가능한 신재생에너지 생산 기술로서 큰 주목을 받고 있으며, MET를 혐기성소화조에 적용할 경우 고농도의 유기성폐기물의 빠른 분해가 가능할 뿐만 아니라 전기화학적인 반응에 의해 휘발성지방산(VFAs)이나 독성물질, 생분해 불가능한 물질까지도 분해가 가능하며, 소화조 내 미생물의 활성을 높이고 바이오가스의 생산량을 극대화 할 수 있다고 알려져 있다. 본 연구에서는 MET가 혐기성소화의 메탄발생에 미치는 영향에 대하여 연구하기 위해 음식물 탈리액과 하수슬러지의 원소조성에 따른 이론적인 최대 메탄수율을 분석하였으며, BMP (Biochemical Methane Potential) 실험과 연속식 실험을 통한 메탄수율의 특성을 평가하였다. 그 결과, MET가 적용된 혐기성소화에서의 메탄수율은 일반적인 혐기성소화조에 비하여 기질에 따라 2-3배 정도 높았으며, 이론적인 최대 메탄수율에 미치지는 못하였으나 일부는 거의 근접한 결과가 도출되었다. 또한, 일반적인 혐기성소화조와 MET가 적용된 혐기성소화조의 안정화 후 바이오가스의 조성은 거의 유사하게 나타났다. 결과적으로, MET가 혐기성소화조의 유기물 제거효율을 향상시켜 메탄발생량을 증가시킨 것으로 나타났으며, 향후 추가적인 연구를 통하여 MET에서 메탄발생 메카니즘이 명확히 규명되어야 할 것이다.

Abstract AI-Helper 아이콘AI-Helper

Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experime...

주제어

참고문헌 (34)

  1. Guo, X., Liu, J. and Xiao, B., "Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells," Int. J. Hydrogen Energy, 38(3), 1342-1347(2013). 

  2. Appels, L., Baeyens, J., Degreve, J. and Dewil, R., "Principles and potential of the anaerobic digestion of waste-activated sludge," Prog. Energy Combust. Sci., 34(6), 755-781(2008). 

  3. Zhang, Y. and Angelidaki, I., "Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges," Water Res., 56, 11-25(2014). 

  4. Zhang, J., Zhang, Y., Quan, X., Chen, S. and Afzal, S., "Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions," Bioresour. Technol., 136, 273-280(2013). 

  5. Cheng, S. and Logan, B. E., "Sustainable and efficient biohydrogen production via electrohydrogenesis," PNAS, 104(47), 18871-18873(2007). 

  6. Wang, A., Liu, W., Ren, N., Cheng, H. and Lee, D.-J., "Reduced internal resistance of microbial electrolysis cell as factor of configuration and stuffing with granular activated carbon," Int. J. Hydrogen Energy, 35(24), 13448-13492(2010). 

  7. Michaud, S., Bernet, N., Buffiere, P., Roustan, M. and Moletta, R., "Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors," Water Res., 36(5), 1385-1391(2002). 

  8. Matt, E. G., Katherine, D. M. and Roderick, I. M., "Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids," Biotechnol. Bioeng., 57(3), 342-355(1998). 

  9. Feng, Y., Zhang, Y., Chen, S. and Quan, X., "Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode," Chem. Eng. J., 259, 787-794(2015). 

  10. Kroeker, E. J., Schulte, D. D., Sparling, A. B. and Lapp, H. M., "Anaerobic treatment process stability," Water Pollut. Control Fed., 51(4), 718-727(1979). 

  11. Lauwers, A. M., Heinen, W., Gorris, L. G. M. and van der Drift, C., "Early stage in biofilm development in methanogenic fluidized bed reactors," Appl. Microbiol. Biotechnol., 33(3), 352-358(1990). 

  12. Yin, Q., Zhu, X., Zhan, G., Bo, T., Yang, Y., Tao, Y., He, X., Li, D. and Yan, Z., "Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina," J. Environ. Sci., JES-00496(2015). 

  13. Nikolaos, X. and Valeria, M., "Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production," INT J Hydrogen Energy, 39(36), 21864-21875(2014). 

  14. Bo, T., Zhu, X., Zhang, L., Tao, Y., He, X., Li, D. and Yan, Z., "A new upgraded biogas production process: Coupling microbialelectrolysis cell and anaerobic digestion in singlechamber, barrel-shape stainless steel reactor," Electrochem. Communi., 45, 67-70(2014). 

  15. Geelhoed J. S. and Stams A. J., "Electricity-assisted biological hydrogen production from acetate by geobacter sulfurreducens," Environ. Sci. Technol., 45(2), 815-820(2011). 

  16. Asrinari Di San Marzano, C.-M., Binot, R., Bol, T., Fropiat, J.-L., Hutschemakers, J., Melchior, J.-L., Perez, I. Naveau, H. and Nyms, E.-J., "Volatile fatty acids, an important state parameter for the control of the reliability and the productivities of methane anaerobic digestions," Biomass, 1(1), 47-59(1981). 

  17. Zhan, G., Zhang, L., Li, D., Su, W., Tao, Y. and Qian, J., "Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell," Bioresour. Technol., 116, 271-277(2012). 

  18. Chae, K. J., Jang, Am, Yim, S. K. and Kim, I. S., "The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure," Bioresour. Technol., 99(1), 1-6(2008). 

  19. Forester-Carneiro, T., Perez, M. and Rpmero, L. I., "Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste," Bioresour. Technol., 99(15), 6994-7002(2008). 

  20. Angelidaki, I. and Ahring, B. K., "Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure," Water Sci. Technol., 41(3), 189-194(2000). 

  21. Najafpour a., G. D., Zinatizadeh, A. A. L., Mohamed, A. R., Hasnain Isa, M. and Nasrollahzadeh, H., "High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor," Proc. Biochem., 41(2), 370-379(2006). 

  22. Rabelo, S. C., Carrere, H., Maciel Filho, R. and Costa, A. C., "Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept," Bioresour. Technol., 102(17), 7887-7895(2011). 

  23. Talarposhti, A. M., Donnelly, T. and Anderson, G. K., "Colour removal from a Simulated dye wastewater using a twophase anaerobic packed bed reactor," Water Res., 35(2), 425-432(2001). 

  24. Angelidaki, I. and Sanders, W., "Assessment of the anaerobic biodegradability of macropollutants," Environ. Sci. Biotechnol., 3(2), 117-129(2004). 

  25. Hansen, K. H., Angelidaki, I. and Ahring, B. K., "Anaerobic digestion of Swine manure: Inhibition by ammonia," Water Res., 32(1), 5-12(1998). 

  26. Ehimen, E. A., Holm-Nielsen, J. B., Poulsen, M. and Boelsmand, J. E., "Influence of different pretreatment routes on the anaerobic digestion of a filamentous algae," Renew. Energy, 50, 476-480(2013). 

  27. Gough, H. L., Nelsen, D., Muller, C. and Ferguson, J., "Enhanced Methane Generation During Theromophilic Co-Digestion of Confectionary Waste and Grease-Trap Fats and Oils with Municipal Wastewater Sludge," Water Environ. Res., 85(2), 175-183(2013). 

  28. Zhou, P., Elbeshbishy, E. and Nakhia, G., "Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids," Bioresour. Technol., 130, 710-718(2012). 

  29. Zhang, C., Xiao, G., Peng, L., Su, H. and Tan, T., "The Anaerobic Co-digestion of Food Waste and Cattle Manure," Bioresour. Technol., 129, 170-176(2012). 

  30. Tartakovsky, B., Metha, P., Bourque, J. S. and Guiot, S. R., "Electrolysis-enhanced anaerobic digestion of wastewater," Bioresour. Technol., 102, 5685-5691(2011). 

  31. Kayhanian, M. and Hardy, S., "The impact of four design parameters on the performance of a high-solids anaerobic digestion of municipal solid waste for fuel gas production," Environ. Technol., 15(6), 557-567(1994). 

  32. Kim, H. W., Han, S. K. and Shin, H. S., "The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge," Waste Manage. Res., 21(6), 515-526(2003). 

  33. la Cour Jansen, J., Gruvberger, C., Hanner, N., Aspegren, H. and Svard, A., "Digestion of sludge and organic waste in the sustainability concept for Malmo, Sweden," Water Sci. Technol., 49(10), 163-169(2004). 

  34. Standard methods for the examination of water and wastewater, APHA(1995), 19th Edition. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로