$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

형태 및 분자 특징에 의한 한국산 꼼치(Liparis tanakae)의 집단 구조
Population Structure of Liparis tanakae (PISCES, Liparidae) from Korea Based on Morphological and Molecular Traits 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.49 no.2, 2016년, pp.198 - 207  

명세훈 (부경대학교 자원생물학과) ,  반태우 (해양생물자원연구소) ,  김진구 (부경대학교 자원생물학과)

Abstract AI-Helper 아이콘AI-Helper

Tanaka’s snailfish, Liparis tanakae (Gilbert and Burke, 1912), is distributed throughout the coasts of Korea. To clarify the population structure of L. tanakae, we analyzed the morphological and genetic variation among individuals sampled from three localities surrounding the Korean peninsula...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 꼼치는 침 성 부착 난을 낳고, 치어기(14 mm 전후) 이후에 배지느러미가 흡반으로 변형되어(Okiyama, 1988) 해류에 의한 확산 정도가 다소 미약할 것으로 추정되므로 지역 집단을 형성할 가능성이 높다고 판단된다. 따라서 본 연구는 우리나라 3개 해역(동해, 서해, 남해)에 서식하는 꼼치를 대상으로 분자 및 형태 분석을 통해 지역 집단간 차이 유무를 파악하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (55)

  1. An YR and Huh SH. 2002. Species composition and seasonal variation of fish assemblage in the coastal water off Gadeokdo, Korea. 3. Fishes collected by crab pots. J Kor Fish Soc 35, 715-722. 

  2. Buonaccorsi VP, McDowell JR and Graves JE. 2001. Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol Ecol 10, 1179-1196. 

  3. Choi HC, Huh SH, Park JM, Baeck GW and Suh YS. 2015. Feeding Habits of Larval Liparis tanakae from the Nakdong River Estuary, KoreaFeeding Habits of Larval Liparis tanakae from the Nakdong River Estuary, Korea. Korean J Fish Aquat Sci 48, 368-376. http://dx.doi.org/10.5657/KFAS.2015.0368. 

  4. Chyung MK. 1977. The Fishes of Korea. Ilji-sa Publishing Co., Seoul, Korea, 555pp. 

  5. Colborn J, Crabtree RE, Shaklee JB, Pfeiler E and Bowen BW. 2001. The evolutionary enigma of bonefishes (Albula spp.): Cryptic species and ancient separations in a globally distributed shorefish. Evolution 55, 807-820. http://dx.doi.org/10.1111/j.0014-3820.2001.tb00816.x. 

  6. Crandall KA, Bininda-Emonds OPR, Mace GM and Wayne RK. 2000. Considering evolutionary processes in conservation biology. Trends Ecol Evol 15, 290-295. 

  7. Crandall KA, Fetzner JrJW, Lawler SH, Kinnersley M and Austin CM. 1999. Phylogenetic relationships among the Australian and New Zealand genera of freshwater crayfishes (Decapoda: Parastacidae). Aust J Zool 47, 199-214. 

  8. Excoffier L, Laval G and Schneider S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online 1, 47-50. 

  9. Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915-925. 

  10. Grant WS and Bowen BW. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89, 415-426. 

  11. Huh SH. 1997. Feeding habits of snailfish, Liparis tanakai. Kor J Ichthyol 9, 71-78. 

  12. Huh SH and An YR. 2000. Species composition and seasonal variation of fish assemblage in the coastal water off Gadeokdo, Korea. 1. Fishes collected by a small otter trawl. J Korean Fish Soc 33, 288-301. 

  13. Kawasaki T, Hashimoto H, Honda H and Otake A. 1983. Selection of life histories and its adaptive significance in a snailfish Liparis tanakai from Sendai Bay. Bull Japan Soc Sci Fish 49, 367-377. 

  14. Khim BK, Bahk JJ, Hyun S and Lee GH. 2007. Late Pleistocene dark laminated mud layers from the Korea Plateau, western East Sea/Japan Sea and their paleoceanographic implications. Palaeogeogr Palaeocl 247, 74-87. 

  15. Kim JK, Doiuchi R and Nakabo T. 2006b. Molecular and morphological differences between two geographic populations of Salanx ariakensis (Salangidae) from Korea and Japan. Ichthyol Res 53, 52-62. 

  16. Kim JK, Kai Y and Nakabo T. 2007. Genetic diversity of Salanx ariakensis (Salangidae) from Korea and Japan inferred from AFLP. Ichthyol Res 54, 416-419. http://dx.doi.org/10.1007/s10228-007-0418-y. 

  17. Kim JK, Park JH, Kim YS, Kim YH, Hwang HJ, Hwang SJ, Lee SI and Kim TI. 2008. Geographic variations in pacific sand eels Ammodytes personatus (Ammodytidae) from Korea and Japan using multivariate morphometric analysis. J Ichthyol 48, 904-910. 

  18. Kim JK, Park JY and Kim YS. 2006a. Genetic diversity, relationships and demographic history of three geographic populations of Ammodytes personatus (Ammodytidae) from Korea Inferred from mitochondrial DNA control region and 16S rRNA sequence data. Kor J Genet 28, 343-351. 

  19. Kim JK, Ryu JH, Kim S, Lee DW, Choi KH, Oh TY, Hwang KS, Choi JH, Kim JN, Kwun HJ, Ji HS and Oh JN. 2011. An identification guide for fish eggs, larvae and juveniles of Korea. Hanguel Graphics Busan pp. 350. 

  20. Kim YU, Park YS and Myoung JG. 1986. Egg development and larvae of the snailfish, Liparis tanakai (Gilbert et Burke). Bull Kor Fish Soc 19, 380-386. 

  21. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111-120. 

  22. Kitamura A and Kimoto K. 2006. History of the inflow of the warm Tsushima Current into the Sea of Japan between 3.5 and 0.8 Ma. Palaeogeogr Palaeocl 236, 355-366. 

  23. Kosaka M. 1971. on the ecological niche of the seasnails, Liparis tanakai in Sendai Bay. J Coll Mar Sci Tech Tokai Univ 5, 27-41. 

  24. Kwak SN and Huh SH. 2003. Feeding habits of juvenile Liparis tanakai in the eelgrass, Zostera marina bed in Kwangyang Bay. J Kor Fish Soc 36, 372-377. 

  25. Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419, 199-206. 

  26. Li WH. 1997. Molecular evolution. Sinauer Associates, Sunderland, MA, USA. 

  27. Lindsey CC. 1988. Factors controlling meristic variation. In: Hoar WS and Randall DJ (ed) Fish Physiology. Academic, Press, San Diego, USA, pp 197-234. 

  28. Liu JX, Gao TX, Yokogawa K and Zhang YP. 2006a. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol Phylogenet Evol 39, 799-811. 

  29. Liu JX, Gao TX, Zhuang ZM, Jin XS, Yokogawa K and Zhang YP. 2006b. Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Mol Phylogenet Evol 40, 712-723. 

  30. Liu JX, Gao TX, Wu SF and Zhang YP. 2007. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck and Schlegel, 1845). Mol Ecol 16, 275-288. 

  31. López JA, Ryburn JA, Fedrigo O and Naylor GJ. 2006. Phylogeny of sharks of the family Triakidae (Carcharhiniformes) and its implications for the evolution of carcharhiniform placental viviparity. Mol Phylogenet Evol 40, 50-60. 

  32. Murray BW, Wang JY, Yang SC, Stevens JD, Fisk A and Svavarsson J. 2008. Mitochondrial cytochrome b variation in sleeper sharks (Squaliformes: Somniosidae). Mar Biol 153, 1015-1022. 

  33. Murta AG, Pinto AL and Abaunza P. 2008. Stock identification of horse mackerel (Trachurus trachurus) through the analysis of body shape. Fish Res 89, 152-158. 

  34. Muss A, Robertson DR, Stepien CA, Wirtz P and Bowen BW. 2001. Phylogeography of Ophioblennius: The role of ocean currents and geography in reef fish evolution. Evol 55, 561-572. 

  35. Myoung SH and Kim JK. 2014. Genetic diversity and population structure of the gizzard shad, Konosirus punctatus (Clupeidae, Pisces), in Korean waters based on mitochondrial DNA control region sequences. Genes Genom 36, 591-598. 

  36. Myoung SH and Kim JK. 2016. Population structure of the Korean gizzard shad, Konosirus punctatus (Clupeiformes, Clupeidae) using multivariate morphometric analysis. Ocean Sci J 51, 33-41. 

  37. Nakabo T. 2002. Fishes of Japan with pictorial keys to the species. (English edition). Tokai Univ Press, Tokyo, Japan. 

  38. Nei M. 1987. Molecular evolutionary genetics. Columbia Univ Press, New York, USA. 

  39. Nei M and Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76, 5269-5273. 

  40. Okiyama M. 1988. An atlas of the early stage fishes in Japan. Tokai Univ Press, Tokyo, Japan. 

  41. Palumbi SR. 1996. Nucleic acids II: the polymerase chain reaction. Molecular systematics 2, 205-247. 

  42. Rice WR. 1989. Analyzing tables of statistical tests. Evol 43, 223-225. 

  43. Rogers AR and Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9, 552-569. 

  44. Scott JS. 1972. Morphological and meristic variation in northwest Atlantic sand lances (Ammodytes). J Fish Res Board Can 29, 1673-1678. 

  45. Silva A. 2003. Morphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. ICES J Mar Sci 60, 1352-1360. 

  46. Swain DP, Frank KT and Maillet G. 2001. Delineating stocks of Atlantic cod (Gadus morhua) in the Gulf of St Lawrence and Cabot Strait areas using vertebral number. ICES J Mar Sci 58, 253-269. 

  47. Tajima F. 1989. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595. 

  48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739. 

  49. Thompson JD, Higgins DG and Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680. 

  50. Turan C. 2000. Otolith shape and meristic analysis of herring (Clupea harengus) in the northeast Atlantic. Arch Fish Mar Res 48, 283-295. 

  51. Turan C, Oral M, Öztürk B and Düzgüneş. 2006. Morphometric and meristic variation between stocks of bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and northeastern Mediterranean Seas. Fish Res 79, 139-147. 

  52. Ustadi, Kim KY and Kim SM. 2005. Purification and identification of a protease inhibitor from glassfish (Liparis tanakai) eggs. J Agric Food Chem 53, 7667-7672. 

  53. Wright S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420. 

  54. Yamada U, Shirai S, Irie T, Tokimura M, Deng S, Zheng Y, Li C, Kim YU and Kim YS. 1995. Names and illustrations of fishes from the East China Sea and the Yellow Sea. Overseas Fishery Cooperation Foundation, Tokyo, Japan. 

  55. Yamada U, Tokimura M, Horikawa H and Nakabo T. 2007. Fishes and fisheries of the East China and Yellow Seas. Tokai University Press, Kanagawa, Japan. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로