$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete 원문보기

Journal of microbiology and biotechnology, v.26 no.3, 2016년, pp.540 - 548  

Kim, Hyun Jung (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University) ,  Eom, Hyo Jung (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University) ,  Park, Chulwoo (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University) ,  Jung, Jaejoon (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University) ,  Shin, Bora (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University) ,  Kim, Wook (Department of Biotechnology, Korea University) ,  Chung, Namhyun (Department of Biotechnology, Korea University) ,  Choi, In-Geol (Department of Biotechnology, Korea University) ,  Park, Woojun (Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University)

Abstract AI-Helper 아이콘AI-Helper

Microbially induced calcium carbonate precipitation (CCP) is a long-standing but re-emerging environmental engineering process for production of self-healing concrete, bioremediation, and long-term storage of CO2. CCP-capable bacteria, two Bacillus strains (JH3 and JH7) and one Sporosarcina strain (...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • EPS quantification was conducted according to previous studies, with slight modifications [25]. One milliliter of cell culture was mixed with Congo red at the final concentration of 3.
  • Nonetheless, the reasons for mineralization by CCP-capable bacteria, regulation of the possible CCP-specific genetic system, and the role or effects of CCP-capable bacteria in ecosystems are still poorly understood. The purpose of this study was to isolate and characterize novel CCP-capable bacteria from concrete. We sampled concrete from two locations (Jingyo and Seoul, South Korea) and characterized them by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS) mapping, urease activity assays, and EPS quantification.

대상 데이터

  • Taxonomic affiliation was determined by sequencing the 16S rRNA and by construction of phylogenetic trees via sequence similarity by means of EzTaxon [6]. The 16S rRNA sequences of the three isolates have been deposited in National Center for Biotechnology Information (NCBI) GenBank under the accession numbers KU168425, KU168426, KU168427 for strains JH3, JH7, and HYO08, respectively. The optimal liquid medium for strains JH3 and JH7 was Luria-Bertani broth, and for strain HYO08 was tryptic soy broth with 2% urea (w/v).

이론/모형

  • A biofilm formation assay was conducted by the crystal violet staining method [16]. Briefly, the four strains, including Escherichia coli MG1655 as a control, were incubated overnight with aeration and washed twice with PBS.
  • Urease activity was measured by a colorimetric assay [30]. Briefly, the strains JH3, JH7, and HYO08 and Escherichia coli MG1655 (negative control) were grown to the stationary phase.
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. Achal V, Pan X, Fu Q, Zhang D. 2012. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J. Hazard. Mater. 30: 201-202. 

  2. Achal V, Pan X. 2011. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 62: 894-902. 

  3. Bains A, Dhami NK, Mukherjee A, Reddy MS. 2015. Influence of expolymeric materials on bacterially induced mineralization of carbonates. Appl. Biochem. Biotechnol. 175: 3531-3541. 

  4. Cho Y, Mahanty B, Kim CG. 2015. Effect of surfactants on CO 2 biomineralization with Sporosarcina pasteurii and Bacillus megaterium. Water Air Soil Pollut. 226: 2245. 

  5. Chou C-W, Seagren EA, Aydilek AH, Lai M. 2011. Biocalcification of sand through ureolysis. J. Geotech. Geoenviron. Eng. 137: 1179-1189. 

  6. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. 

  7. Cuezva S, Fernandez-Cortes A, Porca E, Paši L, Jurado V, Hernandez-Marine M, et al. 2012. The biogeochemical role of Actinobacteria in Altamira Cave, Spain. FEMS Microbiol. Ecol. 81: 281-290. 

  8. Daskalakis MI, Magoulas A, Kotoulas G, Catsikis I, Bakolas A, Karageorgis AP, et al. 2013. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone. J. Appl. Microbiol. 115: 409-423. 

  9. De Muynck W, De Belie N, Verstraete W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36: 118-136. 

  10. De Muynck W, Leuridan S, Van Loo D, Verbeken K, Cnudde V, De Belie N, Verstraete W. 2011. Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl. Environ. Microbiol. 77: 6808-6820. 

  11. Decho AW. 2010. Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol. Eng. 36: 137-144. 

  12. Dhami NK, Reddy MS, Mukherjee A. 2013. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J. Microbiol. Biotechnol. 23: 707-714. 

  13. Ercole C, Bozzelli P, Altieri F, Cacchio P, Del Gallo M. 2012. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria. Microsc. Microanal. 18: 829-839. 

  14. Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW. 2000. Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J. 17: 305-318. 

  15. Gaylarde CC, Gaylarde PM, Neilan BA. 2012. Endolithic phototrophs in built and natural stone. Curr. Microbiol. 65: 183-188. 

  16. Hong H, Ko HJ, Choi IG, Park W. 2013. Previously undescribed plasmids recovered from activated sludge confer tetracycline resistance and phenotypic changes to Acinetobacter oleivorans DR1. Microb. Ecol. 67: 369-379. 

  17. Jimenez-Lopez C, Rodriguez-Navarro C, Piñar G, Carrillo-Rosúa FJ, Rodriguez-Gallego M, Gonzalez-Muñoz MT. 2007. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68: 1929-1936. 

  18. Jiménez G, Urdiain M, Cifuentes A, López-López A, Blanch AR, Tamames J, et al. 2013. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst. Appl. Microbol. 36: 383-391. 

  19. Johnston MD, Muench BA, Banks ED, Barton HA. 2012. Human urine in Lechuguilla Cave: the microbiological impact and potential for bioremediation. J. Cave Karst. Stud. 74: 278-291. 

  20. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235. 

  21. Jroundi F, Fernández-Vivas A, Rodriguez-Navarro C, Bedmar EJ, González-Muñoz MT. 2010. Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb. Ecol. 60: 39-54. 

  22. Jroundi F, Gómez-Suaga P, Jimenez-Lopez C, González-Muñoz MT, Fernandez-Vivas MA. 2012. Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone. Sci. Total Environ. 425: 89-98. 

  23. Kwon SW, Kim BY, Song J, Weon HY, Schumann P, Tindall BJ, et al. 2007. Sporosarcina koreensis sp. nov. and Sporosarcina soli sp. nov., isolated from soil in Korea. Int. J. Syst. Evol. Microbiol. 57: 1694-1698. 

  24. Li Q, Csetenyi L, Paton GI, Gadd GM. 2015. CaCO 3 and SrCO 3 bioprecipitation by fungi isolated from calcareous soil. Environ. Microbiol. 17: 3082-3097. 

  25. López-Moreno A, Sepúlveda-Sánchez JD, Mercedes Alonso Guzmán EM, Le Borgne S. 2014. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates. Biofouling 30: 547-560. 

  26. Manso S, Calvo-Torras MÁ, De Belie N, Segura I, Aguado A. 2015. Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions. Sci. Total Environ. 512-513: 444-453. 

  27. Mansor M, Hamilton TL, Fantle MS, Macalady JL. 2015. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front. Microbiol. 6: 822. 

  28. Marvasi M, Visscher PT, Perito B, Mastromei G, Casillas-Martínez L. 2010. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol. Ecol. 71: 341-350. 

  29. Mitchell AC, Dideriksen K, Spangler LH, Cunningham AB, Gerlach R. 2010. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ. Sci. Technol. 44: 5270-5276. 

  30. Okyay TO, Rodrigues DF. 2013. High throughput colorimetric assay for rapid urease activity quantification. J. Microbiol. Methods 95: 324-326. 

  31. Okyay TO, Rodrigues DF. 2015. Biotic and abiotic effects on CO 2 sequestration during microbially-induced calcium carbonate precipitation. FEMS Microbiol. Ecol. 91: fiv017. 

  32. Phillips AJ, Gerlach R, Lauchnor E, Mitchell AC, Cunningham AB, Spangler L. 2013. Engineered applications of ureolytic biomineralization: a review. Biofouling 29: 715-733. 

  33. Rawlings DE, Dew D, du Plessis C. 2003. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 21: 38-44. 

  34. Rothenstein D, Baier J, Schreiber TD, Barucha V, Bill J. 2012. Influence of zinc on the calcium carbonate biomineralization of Halomonas halophila. Aquat. Biosyst. 8: 31. 

  35. Salman V, Yang T, Berben T, Klein F, Angert E, Teske A. 2015. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett salt marsh. ISME J. 9: 2503-2514. 

  36. Sarayu K, Lyer NR, Murthy AR. 2014. Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials - a review. Appl. Biochem. Biotechnol. 172: 2308-2323. 

  37. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. 

  38. Sellstedt A, Richau KH. 2013. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol. Lett. 342: 179-186. 

  39. Sghaier H, Hezbri K, Ghodhbane-Gtari F, Pujic P, Sen A, Daffonchio D, et al. 2015. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus andGeodermatophilus obscurus proteogenomes. ISME J. 10: 21-29. 

  40. Silva-Castro GA, Uad I, Gonzalez-Martinez A, Rivadeneyra A, Gonzalez-Lopez J, Rivadeneyra MA. 2015. Bioprecipitation of calcium carbonate crystals by bacteria isolated from saline environments grown in culture media amended with seawater and real brine. Biomed. Res. Int. 2015: 816102. 

  41. Tsuda K, Nagano H, Ando A, Shima J, Ogawa J. 2015. Isolation and characterization of psychrotolerant endospore-forming Sporosarcina species associated with minced fish meat (surimi). Int. J. Food Microbiol. 199: 15-22. 

  42. Verma N, Singh NA, Kumar N, Raghu HV. 2013. Screening of different media for sporulation of Bacillus megaterium. J. Microb. Res. Rev. 1: 68-73. 

  43. Wang L, Nilsen-Hamilton M. 2012. Biomineralization proteins: from vertebrates to bacteria. Front. Biol. 8: 234-246. 

  44. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. 

  45. Wei S, Cui H, Jiang Z, Liu H, He H, Fang N. 2015. Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Braz. J. Microbiol. 46: 455-464. 

  46. Wu C-Y, Young L, Young D, Martel J, Young JD. 2013. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids. PLos One 8: e75501. 

  47. Zippel B, Neu TR. 2011. Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis. Appl. Environ. Microbiol. 77: 505-516. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로