$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 금속 나노 촉매를 활용한 선택적 알코올 산화 반응
Supported Metal Nanoparticles: Their Catalytic Applications to Selective Alcohol Oxidation 원문보기

공업화학 = Applied chemistry for engineering, v.27 no.3, 2016년, pp.227 - 238  

무하마드 아시프 후세인 (강원대학교 에너지공학부) ,  느얀즈 조셉 (강원대학교 에너지공학부) ,  강온유 (강원대학교 에너지공학부) ,  조용훈 (강원대학교 에너지공학부) ,  엄병헌 (한국과학기술연구원 천연물연구소) ,  김정원 (강원대학교 에너지공학부)

초록
AI-Helper 아이콘AI-Helper

본 리뷰 논문은 지지화된 또는 고정화된 금속들 중 선택적 알코올 산화 반응에 적용된 나노 크기의 여러 금속 촉매들에 대해 집중적으로 서술한다. 금속 나노 촉매들은 넓은 표면적을 지닌 고체 지지체들의 표면 위에 금속 나노 입자들의 고른 분산을 통해 얻어진다. 이러한 나노 촉매들은 유기 합성, 연료 전지, 바이오 디젤 생산, 오일 크래킹, 에너지변환 및 저장, 의약, 수처리, 고체 로켓 추진체, 염료 제조 등 학문적 산업적 측면 모두 다양하게 사용될 수 있다. 더욱이, 응용성이 풍부한 중간체들을 생산하는 호기성 알코올 산화 반응에서 금속 나노 재료는 촉매로써 매우 중요하다. 금, 팔라듐, 류테늄, 바나디움 등과 같은 지지화된 금속 나노 촉매들의 알코올 산화 반응은 기존의 화학 당량적 반응과 달리 비용을 경감시키고 부반응물들을 줄임으로써 경제적이고 친환경적이다. 뿐만 아니라, 상온에서 진행된 나노 촉매 알코올 산화 반응에 대해서도 소개된다.

Abstract AI-Helper 아이콘AI-Helper

This review article highlights different types of nano-sized catalysts for the selective alcohol oxidation to form aldehydes (or ketones) with supported or immobilized metal nanoparticles. Metal nanoparticle catalysts are obtained through dispersing metal nanoparticles over a solid support with a la...

주제어

참고문헌 (108)

  1. S. Chaturvedi, P. N. Dave, and N. Shah, Applications of nano-catalyst in new era, J. Saudi Chem. Soc., 16, 307-325 (2012). 

  2. S. Chaturvedi and P. N. Dave, A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate, J. Saudi Chem. Soc., 17, 135-149 (2013). 

  3. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025-1102 (2005). 

  4. A. T. Bell, The impact of nanoscience on heterogeneous catalysis, Science, 299, 1688-1691 (2003). 

  5. B. M. Trost, The atom economy-A search for synthetic efficiency, Science, 1471-1477 (1991). 

  6. B. M. Trost, Atom economy-A challenge for organic synthesis: Homogeneous catalysis leads the way, Angew. Chem. Int. Ed., 34, 259-281 (1995). 

  7. R. A. Sheldon, Catalysis: The key to waste minimization, J. Chem. Tech. Biotechnol., 68, 381-388 (1997). 

  8. R. A. Sheldon and E factors, green chemistry and catalysis: An odyssey, Chem. Commun., 29, 3352-3365 (2008). 

  9. J. A. Glaser, Green chemistry with nanocatalysts, Clean Technol. Environ. Policy, 14, 1-8 (2012). 

  10. C. H. Bartholomew and R. J. Farrauto, Fundamentals of Industrial Catalytic Processes, John Wiley & Sons (2011). 

  11. N. R. Shiju and V. V. Guliants, Recent developments in catalysis using nanostructured materials, Appl. Catal., A, 356, 1-17 (2009). 

  12. J. Fan and Y. Gao, Nanoparticle-supported catalysts and catalytic reactions-A mini-review, J. Exp. Nanosci., 1, 457-475 (2006). 

  13. R. Narayanan and M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 4, 1343-1348 (2004). 

  14. Y. H. Kim, S. K. Hwang, J. W. Kim, and Y. S. Lee, Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes, Ind. Eng. Chem. Res., 53, 12548-12552 (2014). 

  15. J. M. G. Carballo, J. Yang, A. Holmen, S. Garcia-Rodriguez, S. Rojas, M. Ojeda, and J. L. G. Fierro, Catalytic effects of ruthenium particle size on the Fischer-Tropsch synthesis, J. Catal., 284, 102-108 (2011). 

  16. B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. R. Rao, K. N. Robertson, and T. S. Cameron, Zeolite-confined nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 125, 2195-2199 (2003). 

  17. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004). 

  18. T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Oxidant free alcohol dehydrogenation using a reusable hydrotalcite supported silver nanoparticle catalyst, Angew. Chem., 120, 144-147 (2008). 

  19. X. Yang, X. Wang, and J. Qiu, Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets, Appl. Catal. A, 382, 131-137 (2010). 

  20. T. Mitsudome, Y. Mikami, K. Ebata, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols, Chem. Commun., 39, 4804-4806 (2008). 

  21. L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He, and K. N. Fan, $MnO_{2}$ nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation, J. Phys. Chem. C, 112, 6981-6987 (2008). 

  22. A. J. Plomp, H. Vuori, A. O. I. Krause, K. P. Jong, and J. H. Bitter, Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde, Appl. Catal. A, 351, 9-15 (2008). 

  23. R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, Alternative methods for the preparation of gold nanoparticles supported on $TiO_{2}$ , J. Phys. Chem. B, 106, 7634-7642 (2002). 

  24. P. Haider and A. Baiker, Gold supported on Cu-Mg-Al-mixed oxides: Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium, J. Catal., 248, 175-187 (2007). 

  25. L. Madler, H. Kammler, R. Mueller, and S. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis, J. Aerosol Sci., 33, 369-389 (2002). 

  26. M. S. Kwon, N. Kim, C. M. Park, J. S. Lee, K. Y. Kang, and J. Park, Palladium nanoparticles entrapped in aluminum hydroxide: Dual catalyst for alkene hydrogenation and aerobic alcohol oxidation, Org. Lett., 7, 1077-1079 (2005). 

  27. S. Kim, S. W. Bae, J. S. Lee, and J. Park, Recyclable gold nanoparticle catalyst for the aerobic alcohol oxidation and C-C bond forming reaction between primary alcohols and ketones under ambient conditions, Tetrahedron., 65, 1461-1466 (2009). 

  28. N. Dimitratos, J. A. Lopez-Sanchez, D. Morgan, A. Carley, L. Prati, and G. J. Hutchings, Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique, Catal. Today, 122, 317-324 (2007). 

  29. S. Dahoah, Z. Nairoukh, M. Fanun, M. Schwarze, R. Schomacker, and J. Blum, Decarbonylation of water insoluble carboxaldehydes in aqueous microemulsions by some sol-gel entrapped catalysts, J. Mol. Catal. A: Chem., 380, 90-93 (2013). 

  30. Y. Hong, X. Yan, X. Liao, R. Li, S. Xu, L. Xiao, and J. Fan, Platinum nanoparticles supported on Ca(Mg)-zeolites for efficient room-temperature alcohol oxidation under aqueous conditions, Chem. Commun., 50, 9679-9682 (2014). 

  31. S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang, and G. A. Somorjai, Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation, Nano Lett., 10, 2709-2713 (2010). 

  32. Z. Opre, D. Ferri, F. Krumeich, T. Mallat, and A. Baiker, Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite, J. Catal., 241, 287-295 (2006). 

  33. S. Seok, M. A. Hussain, K. J. Park, J. W. Kim, and D. H. Kim, Sonochemical synthesis of PdO@ silica as a nanocatalyst for selective aerobic alcohol oxidation, Ultrason. Sonochem., 28, 178-184 (2016). 

  34. E. Gusta, V. Sundaramurthy, A. Dalai, and J. Adjaye, Hydrotreating of heavy gas oil derived from athabasca bitumen over Co-Mo/ $\gamma$ - $Al_{2}O_{3}$ catalyst prepared by sonochemical method, Top. Catal., 37, 147-153 (2006). 

  35. D. Srivastava, N. Perkas, A. Gedanken, and I. Felner, Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties, J. Phys. Chem. B, 106, 1878-1883 (2002). 

  36. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 115, 301-309 (1989). 

  37. M. Okumura, S. Tsubota, and M. Haruta, Vital role of moisture in the catalytic activity of supported gold nanoparticles, Angew. Chem. Int. Ed., 43, 2129-2132 (2004). 

  38. S. Lee, C. Fan, T. Wu, and S. L. Anderson, CO oxidation on Au n/ $TiO_{2}$ catalysts produced by size-selected cluster deposition, J. Am. Chem. Soc., 126, 5682-5683 (2004). 

  39. L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Woste, U. Heiz, H. Hakkinen, and U. Landman, Catalytic CO oxidation by free $Au_{2}^{-}$ : Experiment and theory, J. Am. Chem. Soc., 125, 10437-10445 (2003). 

  40. B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Charging effects on bonding and catalyzed oxidation of CO on $Au_{8}$ clusters on MgO, Science, 307, 403-407 (2005). 

  41. J. Han, Y. Liu, and R. Guo, Reactive template method to synthesize gold nanoparticles with controllable size and morphology supported on shells of polymer hollow microspheres and their application for aerobic alcohol oxidation in water, Adv. Funct. Mater., 19, 1112-1117 (2009). 

  42. C. Milone, R. Ingoglia, G. Neri, A. Pistone, and S. Galvagno, Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol, Appl. Catal., A, 211, 251-257 (2001). 

  43. S. Carrettin, P. McMorn, P. Johnston, K. Griffin, and G. J. Hutchings, Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide, Chem. Commun., 7, 696-697 (2002). 

  44. C. Milone, R. Ingoglia, A. Pistone, G. Neri, and S. Galvagno, Activity of gold catalysts in the liquid-phase oxidation of o-hydroxybenzyl alcohol, Catal. Lett., 87, 201-209 (2003). 

  45. F. Porta and L. Prati, Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: An insight into reaction selectivity, J. Catal., 224, 397-403 (2004). 

  46. D. V. Jawale, E. Gravel, V. Geertsen, H. Li, N. Shah, I. N. Namboothiri, and E. Doris, Aerobic oxidation of phenols and related compounds using carbon nanotube-gold nanohybrid catalysts, Chem. Cat. Chem., 6, 719-723 (2014). 

  47. B. Karimi and F. K. Esfahani, Gold nanoparticles supported on $Cs_{2}CO_{3}$ as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature, Chem. Commun., 37, 5555-5557 (2009). 

  48. B. Karimi and F. K. Esfahani, Gold nanoparticles supported on the periodic mesoporous organosilicas as efficient and reusable catalyst for room temperature aerobic oxidation of alcohols, Adv. Synth. Catal., 354, 1319-1326 (2012). 

  49. M. Mahyari, A. Shaabani, and Y. Bide, Gold nanoparticles supported on supramolecular ionic liquid grafted graphene: A bifunctional catalyst for the selective aerobic oxidation of alcohols, RSC Adv., 3, 22509-22517 (2013). 

  50. M. A. Hussain, M. Yang, T. J. Lee, J. W. Kim, and B. G. Choi, High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide, J. Colloid Interface Sci., 451, 216-220 (2015). 

  51. N. Mizuno and K. Yamaguchi, Selective aerobic oxidations by supported ruthenium hydroxide catalysts, Catal. Today, 132, 18-26 (2008). 

  52. K. Yamaguchi, J. W. Kim, J. He, and N. Mizuno, Aerobic alcohol oxidation catalyzed by supported ruthenium hydroxides, J. Catal., 268, 343-349 (2009). 

  53. K. Yamaguchi and N. Mizuno, Scope, kinetics, and mechanistic aspects of aerobic oxidations catalyzed by ruthenium supported on alumina, Chem. Eur. J., 9, 4353-4361 (2003). 

  54. M. Kotani, T. Koike, K. Yamaguchi, and N. Mizuno, Ruthenium hydroxide on magnetite as a magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction, Green Chem., 8, 735-741 (2006). 

  55. K. Yamaguchi and N. Mizuno, Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen, Angew. Chem. Int. Ed., 41, 4538-4542 (2002). 

  56. K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000). 

  57. K. Mori, S. Kanai, T. Hara, T. Mizugaki, K. Ebitani, K. Jitsukawa, and K. Kaneda, Development of ruthenium-hydroxyapatite-encapsulated superparamagnetic $\gamma$ - $Fe_{2}O_{3}$ nanocrystallites as an efficient oxidation catalyst by molecular oxygen, Chem. Mater., 19, 1249-1256 (2007). 

  58. K. Ebitani, H.-B. Ji, T. Mizugaki, and K. Kaneda, Highly active trimetallic Ru/ $CeO_{2}$ /CoO (OH) catalyst for oxidation of alcohols in the presence of molecular oxygen, J. Mol. Catal. A: Chem., 212, 161-170 (2004). 

  59. K. Ebitani, K. Motokura, T. Mizugaki, and K. Kaneda, Heterotrimetallic RuMnMn species on a hydrotalcite surface as highly efficient heterogeneous catalysts for liquid phase oxidation of alcohols with molecular oxygen, Angew. Chem., 117, 3489-3492 (2005). 

  60. H. Ji, T. Mizugaki, K. Ebitani, and K. Kaneda, Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst, Tetrahedron Lett., 43, 7179-7183 (2002). 

  61. H. B. Ji, K. Ebitani, T. Mizugaki, and K. Kaneda, Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature, Catal. Commun., 3, 511-517 (2002). 

  62. D. I. Enache, D. W. Knight, and G. J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts, Catal. Lett., 103, 43-52 (2005). 

  63. H. Guo, M. Kemell, A. Al-Hunaiti, S. Rautiainen, M. Leskela, and T. Repo, Gold-palladium supported on porous steel fiber matrix: Structured catalyst for benzyl alcohol oxidation and benzyl amine oxidation, Catal. Commun., 12, 1260-1264 (2011). 

  64. E. V. Johnston, O. Verho, M. D. Karkas, M. Shakeri, C. W. Tai, P. Palmgren, K. Eriksson, S. Oscarsson, and J. E. Backvall, Highly dispersed palladium nanoparticles on mesocellular foam: An efficient and recyclable heterogeneous catalyst for alcohol oxidation, Chem. Eur. J., 18, 12202-12206 (2012). 

  65. B. Karimi, S. Abedi, J. H. Clark, and V. Budarin, Highly efficient aerobic oxidation of alcohols using a recoverable catalyst: The role of mesoporous channels of SBA-15 in Stabilizing palladium nanoparticles, Angew. Chem. Int. Ed., 45, 4776-4779(2006). 

  66. V. Polshettiwar and R. S. Varma, Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: A selective and sustainable oxidation protocol with high turnover number, Org. Biomol. Chem., 7, 37-40 (2009). 

  67. T. Nishimura, N. Kakiuchi, M. Inoue, and S. Uemura, Palladium (II)-supported hydrotalcite as a catalyst for selective oxidation of alcohols using molecular oxygen, Chem. Commun., 14, 1245-1246 (2000). 

  68. U. R. Pillai and E. Sahle-Demessie, Selective oxidation of alcohols by molecular oxygen over a Pd/MgO catalyst in the absence of any additives, Green Chem., 6, 161-165 (2004). 

  69. Z. Hou, N. Theyssen, A. Brinkmann, K. V. Klementiev, W. Grunert, M. Buhl, W. Schmidt, B. Spliethoff, B. Tesche, and C. Weidenthaler, Supported palladium nanoparticles on hybrid mesoporous silica: Structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide, J. Catal., 258, 315-323 (2008). 

  70. C. M. Parlett, D. W. Bruce, N. S. Hondow, A. F. Lee, and K. Wilson, Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas, ACS Catal., 1, 636-640 (2011). 

  71. N. Dimitratos, A. Villa, D. Wang, F. Porta, D. Su, and L. Prati, Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols, J. Catal., 244, 113-121 (2006). 

  72. A. Yoshida, Y. Takahashi, T. Ikeda, K. Azemoto, and S. Naito, Catalytic oxidation of aromatic alcohols and alkylarenes with molecular oxygen over Ir/ $TiO_{2}$ , Catal. Today, 164, 332-335 (2011). 

  73. S. Velusamy, A. Srinivasan, and T. Punniyamurthy, Copper (II) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen, Tetrahedron Lett., 47, 923-926 (2006). 

  74. S. G. Babu, P. A. Priyadarsini, and R. Karvembu, Copper on boehmite: A simple, selective, efficient and reusable heterogeneous catalyst for oxidation of alcohols with periodic acid in water at room temperature, Appl. Catal., A, 392, 218-224 (2011). 

  75. M. L. Kantam, R. Arundhathi, P. R. Likhar, and D. Damodara, Reusable copper aluminum hydrotalcite/rac BINOL system for room temperature selective aerobic oxidation of alcohols, Adv. Synth. Catal., 351, 2633-2637 (2009). 

  76. P. Gamez, I. W. Arends, R. A. Sheldon, and J. Reedijk, Room temperature aerobic copper-catalysed selective oxidation of primary alcohols to aldehydes, Adv. Synth. Catal., 346, 805-811 (2004). 

  77. G. Sarmah, S. K. Bharadwaj, A. Dewan, A. Gogoi, and U. Bora, An efficient and reusable vanadium based catalytic system for room temperature oxidation of alcohols to aldehydes and ketones, Tetrahedron Lett., 55, 5029-5032 (2014). 

  78. A. Shaabani, S. Keshipour, M. Hamidzad, and M. Seyyedhamzeh, Cobalt (II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols, J. Chem. Sci., 126, 111-115 (2014). 

  79. J. D. Lou and Z.-N. Xu, Selective oxidation of primary alcohols with chromium trioxide under solvent free conditions, Tetrahedron Lett., 43, 6095-6097 (2002). 

  80. R. Sheldon, Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes. Elsevier (2012). 

  81. X. Yang, X. Wang, C. Liang, W. Su, C. Wang, Z. Feng, C. Li, and J. Qiu, Aerobic oxidation of alcohols over Au/ $TiO_{2}$ : An insight on the promotion effect of water on the catalytic activity of Au/ $TiO_{2}$ , Catal. Commun., 9, 2278-2281 (2008). 

  82. A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005). 

  83. J. Hu, L. Chen, K. Zhu, A. Suchopar, and R. Richards, Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica, Catal. Today, 122, 277-283 (2007). 

  84. W. Fang, Q. Zhang, J. Chen, W. Deng, and Y. Wang, Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols, Chem. Commun., 46, 1547-1549 (2010). 

  85. D. I. Enache, D. Barker, J. K. Edwards, S. H. Taylor, D. W. Knight, A. F. Carley, and G. J. Hutchings, Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance, Catal. Today, 122, 407-411 (2007). 

  86. A. Abad, C. Almela, A. Corma, and H. Garcia, Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts, Tetrahedron., 62, 6666-6672 (2006). 

  87. N. Kakiuchi, Y. Maeda, T. Nishimura, and S. Uemura, Pd (II)-Hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air, J. Org. Chem., 66, 6620-6625 (2001). 

  88. D. R. Jensen, J. S. Pugsley, and M. S. Sigman, Palladium-catalyzed enantioselective oxidations of alcohols using molecular oxygen, J. Am. Chem. Soc., 123, 7475-7476 (2001). 

  89. K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts, J. Am. Chem. Soc., 124, 11572-11573 (2002). 

  90. R. Ciriminna, S. Campestrini, and M. Pagliaro, FluoRuGel: a versatile catalyst for aerobic alcohol oxidation in supercritical carbon dioxide, Org. Biomol. Chem., 4, 2637-2641 (2006). 

  91. N. Theyssen, Z. Hou, and W. Leitner, Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction medium, Chem. Eur. J., 12, 3401-3409 (2006). 

  92. Z. Hou, N. Theyssen, and W. Leitner, Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide, Green Chem., 9, 127-132 (2007). 

  93. E. Choi, C. Lee, Y. Na, and S. Chang, $[RuCl_{2}(p-cymene)]_{2}$ on carbon: An efficient, selective, reusable, and environmentally versatile heterogeneous catalyst, Org. Lett., 4, 2369-2371 (2002). 

  94. P. A. Shapley, N. Zhang, J. L. Allen, D. H. Pool, and H.-C. Liang, Selective alcohol oxidation with molecular oxygen catalyzed by Os-Cr and Ru-Cr complexes, J. Am. Chem. Soc., 122, 1079-1091 (2000). 

  95. A. N. Kharat, P. Pendleton, A. Badalyan, M. Abedini, and M. M. Amini, Oxidation of aldehydes using silica-supported Co (II)-substituted heteropolyacid, J. Mol. Catal. A: Chem., 175, 277-283 (2001). 

  96. S. Murahashi, T. Naota, and N. Hirai, Aerobic oxidation of alcohols with ruthenium-cobalt bimetallic catalyst in the presence of aldehydes, J. Org. Chem., 58, 7318-7319 (1993). 

  97. Z. Opre, J.-D. Grunwaldt, M. Maciejewski, D. Ferri, T. Mallat, and A. Baiker, Promoted Ru-hydroxyapatite: Designed structure for the fast and highly selective oxidation of alcohols with oxygen, J. Catal., 230, 406-419 (2005). 

  98. Z. Opre, J.-D. Grunwaldt, T. Mallat, and A. Baiker, Selective oxidation of alcohols with oxygen on Ru-Co-hydroxyapatite: A mechanistic study, J. Mol. Catal. A: Chem., 242, 224-232 (2005). 

  99. F. Vocanson, Y. Guo, J. Namy, and H. Kagan, Dioxygen oxidation of alcohols and aldehydes over a cerium dioxide-ruthenium system, Synth. Commun., 28, 2577-2582 (1998). 

  100. S. Venkatesan, A. S. Kumar, J.-F. Lee, T.-S. Chan, and J.-M. Zen, Ruthenium-functionalized nickel hydroxide catalyst for highly efficient alcohol oxidations in the presence of molecular oxygen, Chem. Commun., 14, 1912-1914 (2009). 

  101. M. Gopiraman, S. Ganesh Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R. Karvembu, and I. S. Kim, Dry synthesis of easily tunable nano ruthenium supported on graphene: novel nanocatalysts for aerial oxidation of alcohols and transfer hydrogenation of ketones, J. Phys. Chem. C, 117, 23582-23596 (2013). 

  102. T. Yasueda, S. Kitamura, N. O. Ikenaga, T. Miyake, and T. Suzuki, Selective oxidation of alcohols with molecular oxygen over $Ru/CaO-ZrO_{2}$ catalyst, J. Mol. Catal. A: Chem., 323, 7-15 (2010). 

  103. P. Haider, J.-D. Grunwaldt, R. Seidel, and A. Baiker, Gold supported on Cu-Mg-Al and Cu-Ce mixed oxides: An in situ XANES study on the state of Au during aerobic alcohol oxidation, J. Catal., 250, 313-323 (2007). 

  104. J. D. Cosimo, V. Diez, M. Xu, E. Iglesia, and C. Apesteguia, Structure and surface and catalytic properties of Mg-Al basic oxides, J. Catal., 178, 499-510 (1998). 

  105. T. Sato and T. Komanoya, Selective oxidation of alcohols with molecular oxygen catalyzed by $Ru/MnO_{x}/CeO_{2}$ under mild conditions, Catal. Commun., 10, 1095-1098 (2009). 

  106. M. J. Schultz, C. C. Park, and M. S. Sigman, A convenient palladium-catalyzed aerobic oxidation of alcohols at room temperature, Chem. Commun., 24, 3034-3035 (2002). 

  107. L. Wang, J. Zhang, X. Meng, D. Zheng, and F.-S. Xiao, Superior catalytic properties in aerobic oxidation of alcohols over Au nanoparticles supported on layered double hydroxide, Catal. Today, 175, 404-410 (2011). 

  108. H. Miyamura, R. Matsubara, Y. Miyazaki, and S. Kobayashi, Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives, Angew. Chem., 119, 4229-4232 (2007). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로