• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


현재까지 곤충 항균 펩티드는 1980년에 세크로피아나방(Hyalophora cecropia) 번데기의 혈림프로부터 세크로핀(cecropin)이 처음으로 정제된 이후로 150개 이상의 펩티드가 분리되어 특성들이 보고되어 왔다. 그러므로 곤충은 항균 펩티드 선발을 위한 좋은 재료로서 고려되어 왔다. 곤충 항균 펩티드는 분자량이 작으며 양전하를 띠고 다양한 길이와 서열 및 구조를 갖는 양친매성의 특징을 갖는다. 곤충 항균 펩티드는 박테리아, 진균, 기생충, 그리고 바이러스와 같은 병원체들의 침입에 대항하여 곤충의 선천성 면역체계에서 중요한 역할을 수행한다. 대부분의 곤충 항균 펩티드들은 상처가 나거나 면역화 시 지방체와 다른 특정 조직들에서 유도 합성된다. 이어서 그 항균 펩티드들은 미생물들에 대항하여 작용하기 위해 혈림프로 분비되어 나온다. 이들 펩티드들은 항암활성을 포함하여 다양한 미생물들에 대해 광범위한 항균활성을 나타낸다. 곤충 항균 펩티드는 구조 및 서열상의 특징들에 기초하여 크게 4개의 패밀리로 나누어질 수 있다. 다시 말해서 α-나선형 펩티드, 시스테인-풍부 펩티드, 프롤린-풍부 펩티드, 그리고 글리신-풍부 펩티드/단백질이 그것이다. 예를 들면, 세크로핀, 곤충 디펜신(defensin), 프롤린-풍부 펩티드, 그리고 아타신(attacin)이 일반적인 곤충 항균 펩티드들인데, 글로베린(gloverin)과 모리신(moricin)은 나비목 종들에서만 확인되어 왔다. 본 총설에서는 곤충의 항균 펩티드들에 초점을 맞추어 곤충 항균 펩티드들의 적용 가능성 및 방향과 함께 현재의 지식들과 최근의 진전된 사항들에 대하여 논의하고자 한다.


By this time, insect antimicrobial peptides (AMPs) have been characterized more than 150 peptides since purification of cecropin in the hemolymph of pupae from Hyalophora cecropia in 1980. Therefore, it is considered that insects are good sources of AMP selection. Insect AMPs are small (low molecular weight) and cationic, and amphipathic with variable length, sequence, and structure. They perform a pivotal role on humoral immunity in the insect innate immune system against invading pathogens such as bacteria, fungi, parasites, and viruses. Most of the insect AMPs are induced rapidly in the fat bodies and other specific tissues of insects after septic injury or immune challenge. Then the AMPs subsequently released into the hemolymph to act against microorganisms. These peptides have a broad antimicrobial spectrum against various microbes including anticancer activities. Insect AMPs could be divided into four families based on their structures and sequences. That is the α-helical peptides, cysteine-rich peptides, proline-rich peptides, and glycine-rich peptides/proteins. For instance, cecropins, insect defensins, proline-rich peptides, and attacins are common insect AMPs, but gloverins and moricins have been identified only in lepidopteran species. This review focuses on AMPs from insects and discusses current knowledge and recent progress with potential applications of insect AMPs.

이미지/표/수식 (3)

참고문헌 (114)

  1. Alberola, J., Rodriguez, A., Francino, O., Roura, X., Rivas, L. and Andreu, D. 2004. Safety and efficacy of antimicrobial peptides against naturally acquired leishmaniasis. Antimicrob. Agents Chemother. 48, 641-643. 
  2. Arrowood, M. J., Jaynes, J. M. and Healey, M. C. 1991. In vitro activities of lytic peptides against the sporozoites of Cryptosporidium parvum. Antimicrob. Agents Chemother. 35, 224-227. 
  3. Asling, B., Dushay M. S. and Hultmark, D. 1995. Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem. Mol. Biol. 25, 511-518. 
  4. Axen, A., Carlsson, A., Engstrom, A. and Bennich, H. 1997. Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. Eur. J. Biochem. 247, 614-619. 
  5. Bang, K., Park, S., Yoo, J. Y. and Cho, S. 2012. Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hubner) (Insecta: Lepidoptera: Noctuidae). Mol. Biol. Rep. 39, 5151-5159. 
  6. Bao, Y., Yamano, Y. and Morishima, I. 2005. A novel lebocin-like gene from eri-silkworm, Samia cynthia ricini, that does not encode the antibacterial peptide lebocin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 140, 127-131. 
  7. Barr, S. C., Rose, D. and Jaynes, J. M. 1995. Activity of lytic peptides against intracellular Trypanosoma cruzi amastigotes in vitro and parasitemias in mice. J. Parasitol. 81, 974-978. 
  8. Boisbouvier, J., Prochnicka-Chalufour, A., Nieto, A. R., Torres, J. A., Nanard, N., Rodriguez, M. H., Possani, L. D. and Delepierre, M. 1998. Structural information on a cecropin-like synthetic peptide, Shiva-3 toxic to the sporogonic development of Plasmodium berghei. Eur. J. Biochem. 257, 263-273. 
  9. Boman, H. G., Nilsson-Faye, I., Paul, K. and Rasmuson, T. Jr. 1974. Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect. Immun. 10, 136-145. 
  10. Boulanger, N., Brun, R., Ehret-Sabatier, L., Kunz, C. and Bulet, P. 2002a. Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem. Mol. Biol. 32, 369-375. 
  11. Boulanger, N., Munks, R. J., Hamilton, J. V., Vovelle, F., Brun, R., Lehane, M. J. and Bulet, P. 2002b. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J. Biol. Chem. 277, 49921-49926. 
  12. Brown, S. E., Howard, A., Kasprzak, A. B., Gordon, K. H. and East, P. D. 2008. The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella. Insect Biochem. Mol. Biol. 38, 201-212. 
  13. Bulet, P., Cociancich, S., Dimarcq, J. L., Lambert, J., Reichhart, J. M., Hoffmann, D., Hetru, C. and Hoffmann, J. A. 1991. Insect immunity. Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family. J. Biol. Chem. 266, 24520-24525. 
  14. Bulet, P., Cociancich, S., Reuland, M., Sauber, F., Bischoff, R., Hegy, G., Van, Dorsselaer, A., Hetru, C. and Hoffmann, J. A. 1992. A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). Eur. J. Biochem. 209, 977-984. 
  15. Bulet, P., Dimarcq, J. L., Hetru, C., Lagueux, M., Charlet, M., Hegy, G., Van, Dorsselaer, A. and Hoffmann, J. A. 1993. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268, 14893-14897. 
  16. Bulet, P. and Stocklin, R. 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12, 3-11. 
  17. Carlsson, A., Engstrom, P., Palva, E. T. and Bennich, H. 1991. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect. Immun. 59, 3040-3045. 
  18. Carlsson, A., Nystrom, T., de, Cock, H. and Bennich, H. 1998. Attacin-an insect immune protein–binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology 144, 2179-2188. 
  19. Casteels, P., Ampe, C., Jacobs, F., Vaeck, M. and Tempst, P. 1989. Apidaecins: antibacterial peptides from honeybees. EMBO J. 8, 2387-2391. 
  20. Casteels, P., Ampe, C., Riviere, L., Van, Damme, J., Elicone, C., Fleming, M., Jacobs, F. and Tempst, P. 1990. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381-386. 
  21. Cavallarin, L., Andreu, D. and San, Segundo, B. 1998. Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol. Plant Microbe Interact. 11, 218-227. 
  22. Cerovsky, V., Zdarek, J., Fucik, V., Monincova, L., Voburka, Z. and Bem, R. 2010. Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell. Mol. Life Sci. 67, 455-466. 
  23. Chalekson, C. P., Neumeister, M. W. and Jaynes, J. 2003. Treatment of infected wound with the antimicrobial peptide D2A21. J. Trauma 54, 770-774. 
  24. Chen, H. M., Wang, W., Smith, D. and Chan, S. C. 1997. Effects of the antibacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim. Biophys. Acta 1336, 171-179. 
  25. Chowdhury, S., Taniai, K., Hara, S., Kadono-Okuda, K., Kato, Y., Yamamoto, M., Xu, J., Choi, S. K., Debnath, N. C., Choi, H. K., Miyanoshita, A., Sugiyama, M., Asaoka, A. and Yamakawa, M. 1995. cDNA cloning and gene expression of lebocin, a novel member of antibacterial peptides from the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 214, 271-278. 
  26. Cho, W. L., Fu, Y. C., Chen, C. C. and Ho, C. M. 1996. Cloning and characterization of cDNAs encoding the antibacterial peptide, defensin A, from the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 26, 395-402. 
  27. Cociancich, S., Dupont, A., Hegy, G., Lanot, R., Holder, F., Hetru, C., Hoffmann, J. A. and Bulet, P. 1994. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem. J. 300, 567-575. 
  28. Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J. A. and Letellier, L. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268, 19239-19245. 
  29. Dai, H., Rayaprolu, S., Gong, Y., Huang, R., Prakash, O. and Jiang, H. 2008. Solution structure, antibacterial activity, and expression profile of Manduca sexta moricin. J. Pept. Sci. 14, 855-863. 
  30. Da, Silva, P., Jouvensal, L., Lamberty, M., Bulet, P., Caille, A. and Vovelle, F. 2003. Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci. 12, 438-446. 
  31. DeLucca, A. J., Bland, J. M., Jacks, T. J., Grimm, C., Cleveland, T. E. and Walsh, T. J. 1997. Fungicidal activity of cecropin A. Antimicrob. Agents Chemother. 41, 481-483. 
  32. Dimarcq, J. L., Zachary, D., Hoffmann, J. A., Hoffmann, D. and Reichhart, J. M. 1990. Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae. EMBO J. 9, 2507-2515. 
  33. Dushay, M. S., Roethele, J. B., Chaverri, J. M., Dulek, D. E., Syed, S. K., Kitami, T. and Eldon, E. D. 2000. Two attacin antibacterial genes of Drosophila melanogaster. Gene 246, 49-57. 
  34. Ekengren, S. and Hultmark, D. 1999. Drosophila cecropin as an antifungal agent. Insect Biochem. Mol. Biol. 29, 965-972. 
  35. Engstrom, P., Carlsson, A., Engstrom, A., Tao, Z. J. and Bennich, H. 1984b. The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J. 3, 3347-3351. 
  36. Faye, I., Pye, A., Rasmuson, T., Boman, H. G. and Boman, I. A. 1975. Insect immunity. 11. Simultaneous induction of antibacterial activity and selection synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect. Immun. 12, 1426-1438. 
  37. Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T. and Kobayashi, K. 1990. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem. 265, 11333-11337. 
  38. Ganz, T. and Lehrer, R. I. 1994. Defensins. Curr. Opin. Immunol. 6, 584-589. 
  39. Gunne, H., Hellers, M. and Steiner, H. 1990. Structure of preproattacin and its processing in insect cells infected with a recombinant baculovirus. Eur. J. Biochem. 187, 699-703. 
  40. Gwadz, R. W., Kaslow, D., Lee, J. Y., Maloy, W. L., Zasloff, M. and Miller, L. H. 1989. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect. Immun. 57, 2628-2633. 
  41. Hao, Z., Kasumba, I., Lehane, M. J., Gibson, W. C., Kwon, J. and Aksoy, S. 2001. Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc. Natl. Acad. Sci. USA 98, 12648-12653. 
  42. Hara, S. and Yamakawa, M. 1995a. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J. Biol. Chem. 270, 29923-29927. 
  43. Hara, S. and Yamakawa, M. 1995b. A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem. J. 310, 651-656. 
  44. Hedengren, M., Borge, K. and Hultmark, D. 2000. Expression and evolution of the Drosophila attacin/diptericin gene family. Biochem. Biophys. Res. Commun. 279, 574-581. 
  45. Hemmi, H., Ishibashi, J., Hara, S. and Yamakawa, M. 2002. Solution structure of moricin, an antibacterial peptide, isolated from the silkworm Bombyx mori. FEBS Lett. 518, 33-38. 
  46. Hultmark, D., Engstrom, A., Andersson, K., Steiner, H., Bennich, H. and Boman, H. G. 1983. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 2, 571-576. 
  47. Hu, Y. and Aksoy, S. 2005. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem. Mol. Biol. 35, 105-115. 
  48. Hultmark, D., Engstrom, A., Bennich, H., Kapur, R. and Boman, H. G. 1982. Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem. 127, 207-217. 
  49. Hultmark, D., Steiner, H., Rasmuson, T. and Boman, H. G. 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7-16. 
  50. Hwang, J. and Kim, Y. 2011. RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis. J. Invertebr. Pathol. 108, 194-200. 
  51. Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. 2009. Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, Copris tripartitus. Int. J. Pept. 2009, 136284. 
  52. Imler, J. L. and Bulet, P. 2005. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy 86, 1-21. 
  53. Jaynes, J. M., Burton, C. A., Barr, S. B., Jeffers, G. W., Julian, G. R., White, K. L., Enright, F. M., Klei, T. R. and Laine, R. A. 1988. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J. 2, 2878-2883. 
  54. Kaneko, Y., Tanaka, H., Ishibashi, J., Iwasaki, T. and Yamakawa, M. 2008. Gene expression of a novel defensin antimicrobial peptide in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 72, 2353-2361. 
  55. Kang, D., Lundstrom, A. and Steiner, H. 1996. Trichoplusia ni attacin A, a differentially displayed insect gene coding for an antibacterial protein. Gene 174, 245-249. 
  56. Kawaoka, S., Katsuma, S., Daimon, T., Isono, R., Omuro, N., Mita, K. and Shimada, T. 2008. Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 67, 87-96. 
  57. Kim, S. R., Hong, M. Y., Park, S. W., Choi, K. H., Yun, E. Y., Goo, T. W., Kang, S. W., Suh, H. J., Kim, I. and Hwang, J. S. 2010. Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus. Mol. Cells 29, 419-423. 
  58. Kishimoto, K., Fujimoto, S., Matsumoto, K., Yamano, Y. and Morishima, I. 2002. Protein purification, cDNA cloning and gene expression of attacin, an antibacterial protein, from eri-silkworm, Samia cynthia ricini. Insect Biochem. Mol. Biol. 32, 881-887. 
  59. Kockum, K., Faye, I., Hofsten, P. V., Lee, J. Y., Xanthopoulos, K. G. and Boman, H. G. 1984. Insect immunity. Isolation and sequence of two cDNA clones corresponding to acidic and basic attacins from Hyalophora cecropia. EMBO J. 3, 2071-2075. 
  60. Kwon, Y. M., Kim, H. J., Kim, Y. I., Kang, Y. J., Lee, I. H., Jin, B. R., Han, Y. S., Cheon, H. M., Ha, N. G. and Seo, S. J. 2008. Comparative analysis of two attacin genes from Hyphantria cunea. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 151, 213-220. 
  61. Lambert, J., Keppi, E., Dimarcq, J. L., Wicker, C., Reichhart, J. M., Dunbar, B., Lepage, P., Van, Dorsselaer, A., Hoffmann, J., Fothergill, J. and Hoffmann, D. 1989. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci. USA 86, 262-266. 
  62. Lamberty, M., Ades, S., Uttenweiler-Joseph, S., Brookhart, G., Bushey, D., Hoffmann, J. A. and Bulet, P. 1999. Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J. Biol. Chem. 274, 9320-9326. 
  63. Landon, C., Meudal, H., Boulanger, N., Bulet, P. and Vovelle, F. 2006. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. Biopolymers 81, 92-103. 
  64. Landon, C., Sodano, P., Hetru, C., Hoffmann, J. and Ptak, M. 1997. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci. 6, 1878-1884. 
  65. Lavine, M. D., Chen, G. and Strand, M. R. 2005. Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens. Insect Biochem. Mol. Biol. 35, 1335-1346. 
  66. Lee, S. Y., Moon, H. J., Kawabata, S., Kurata, S., Natori, S. and Lee, B. L. 1995. A sapecin homologue of Holotrichia diomphalia: purification, sequencing and determination of disulfide pairs. Biol. Pharm. Bull. 18, 457-459. 
  67. Lee, Y. S., Yun, E. K., Jang, W. S., Kim, I., Lee, J. H., Park, S. Y., Ryu, K. S., Seo, S. J., Kim, C. H. and Lee, I. H. 2004. Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol. Biol. 13, 65-72. 
  68. Lehane, M. J., Wu, D. and Lehane, S. M. 1997. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc. Natl. Acad. Sci. USA 94, 11502-11507. 
  69. Levashina, E. A., Ohresser, S., Bulet, P., Reichhart, J. M., Hetru, C. and Hoffmann, J. A. 1995. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233, 694-700. 
  70. Li, Z. Q., Merrifield, R. B., Boman, I. A. and Boman, H. G. 1988. Effects on electrophoretic mobility and antibacterial spectrum of removal of two residues from synthetic sarcotoxin IA and addition of the same residues to cecropin B. FEBS Lett. 231, 299-302. 
  71. Liu, G., Kang, D. and Steiner, H. 2000. Trichoplusia ni lebocin, an inducible immune gene with a downstream insertion element. Biochem. Biophys. Res. Commun. 269, 803-807. 
  72. Lowenberger, C., Bulet, P., Charlet, M., Hetru, C., Hodgeman, B., Christensen, B. M. and Hoffmann, J. A. 1995. Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 25, 867-873. 
  73. Lundstrom, A., Liu, G., Kang, D., Berzins, K. and Steiner, H. 2002. Trichoplusia ni gloverin, an inducible immune gene encoding an antibacterial insect protein. Insect Biochem. Mol. Biol. 32, 795-801. 
  74. Mackintosh, J. A., Gooley, A. A., Karuso, P. H., Beattie, A. J., Jardine, D. R. and Veal, D. A. 1998a. A gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev. Comp. Immunol. 22, 387-399. 
  75. Mackintosh, J. A., Veal, D. A., Beattie, A. J. and Gooley, A. A. 1998b. Isolation from an ant Myrmecia gulosa of two inducible O-glycosylated proline-rich antibacterial peptides. J. Biol. Chem. 273, 6139-6143. 
  76. Matsuyama, K. and Natori, S. 1988a. Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. J. Biol. Chem. 263, 17117-17121. 
  77. Matsuyama, K. and Natori, S. 1988b. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J. Biol. Chem. 263, 17112-17116. 
  78. Moon, H. J., Lee, S. Y., Kurata, S., Natori, S. and Lee, B. L. 1994. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J. Biochem. 116, 53-58. 
  79. Moore, A. J., Beazley, W. D., Bibby, M. C. and Devine, D. A. 1996. Antimicrobial activity of cecropins. J. Antimicrob. Chemother. 37, 1077-1089. 
  80. Moreno-Habel, D. A., Biglang-awa, I. M., Dulce, A., Luu, D. D., Garcia, P., Weers, P. M. and Haas-Stapleton, E. J. 2012. Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by gloverin. J. Invertebr. Pathol. 110, 92-101. 
  81. Mrinal, N. and Nagaraju, J. 2008. Intron loss is associated with gain of function in the evolution of the gloverin family of antibacterial genes in Bombyx mori. J. Biol. Chem. 283, 23376-23387. 
  82. Nakajima, Y., Qu, X. M. and Natori, S. 1987. Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina (flesh fly). J. Biol. Chem. 262, 1665-1669. 
  83. Oh, D., Shin, S. Y., Lee, S., Kang, J. H., Kim, S. D., Ryu, P. D., Hahm, K. S. and Kim, Y. 2000. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 39, 11855-11864. 
  84. Oizumi, Y., Hemmi, H., Minami, M., Asaoka, A. and Yamakawa, M. 2005. Isolation, gene expression and solution structure of a novel moricin analogue, antibacterial peptide from a lepidopteran insect, Spodoptera litura. Biochim. Biophys. Acta 1752, 83-92. 
  85. Okada, M. and Natori, S. 1985. Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J. Biol. Chem. 260, 7174-7177. 
  86. Otvos, L. Jr. 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6, 497-511. 
  87. Ourth, D. D., Lockey, T. D. and Renis, H. E. 1994. Induction of cecropin-like and attacin-like antibacterial but not antiviral activity in Heliothis virescens larvae. Biochem. Biophys. Res. Commun. 200, 35-44. 
  88. Rao, X. J., Xu, X. X. and Yu, X. Q. 2012. Functional analysis of two lebocin related proteins from Manduca sexta. Insect Biochem. Mol. Biol. 42, 231-239. 
  89. Rao, X. J. and Yu, X. Q. 2010. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Dev. Comp. Immunol. 34, 1119-1128. 
  90. Rayaprolu, S., Wang, Y., Kanost, M. R., Hartson, S. and Jiang, H. 2010. Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manduca sexta. Dev. Comp. Immunol. 34, 638-647. 
  91. Rees, J. A., Moniatte, M. and Bulet, P. 1997. Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect Biochem. Mol. Biol. 27, 413-422. 
  92. Robertson, M. and Postlethwait, J. H. 1986. The humoral antibacterial response of Drosophila adults. Dev. Comp. Immunol. 10, 167-179. 
  93. Rodriguez, M. C., Zamudio, F., Torres, J. A., Gonzalez-Ceron, L., Possani, L. D. and Rodriguez, M. H. 1995. Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp. Parasitol. 80, 596-604. 
  94. Samakovlis, C., Kimbrell, D. A., Kylsten, P., Engstrom, A. and Hultmark, D. 1990. The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J. 9, 2969-2976. 
  95. Schroder, J. M. and Harder, J. 2006. Antimicrobial peptides in skin disease. Drug Discovery Today: Therapeutic Strategies 3, 93-100. 
  96. Schuhmann, B., Seitz, V., Vilcinskas, A. and Podsiadlowski, L. 2003. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53, 125-133. 
  97. Seufi, A. M., Hafez, E. E. and Galal, F. H. 2011. Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis. BMC Mol. Biol. 12, 47. 
  98. Steiner, H., Hultmark, D., Engstrom, A., Bennich, H. and Boman, H. G. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248. 
  99. Stork, N. E., McBroom, J., Gely, C. and Hamilton, A. J. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. USA 112, 7519-7523. 
  100. Sugiyama, M., Kuniyoshi, H., Kotani, E., Taniai, K., Kadono-Okuda, K., Kato, Y., Yamamoto, M., Shimabukuro, M., Chowdhury, S., Xu, J., Choi, S. K., Kataoka, H., Suzuki, A. and Yamakawa, M. 1995. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem. Mol. Biol. 25, 385-392. 
  101. Sun, S. C., Lindstrom, I., Lee, J. Y. and Faye, I. 1991. Structure and expression of the attacin genes in Hyalophora cecropia. Eur. J. Biochem. 196, 247-254. 
  102. Suttmann, H., Retz, M., Paulsen, F., Harder, J., Zwergel, U., Kamradt, J., Wullich, B., Unteregger, G., Stockle, M. and Lehmann, J. 2008. Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol. 8, 5. 
  103. Tamez-Guerra, P., Valadez-Lira, J. A., Alcocer-Gonzalez, J. M., Oppert, B., Gomez-Flores, R., Tamez-Guerra, R. and Rodriguez-Padilla, C. 2008. Detection of genes encoding antimicrobial peptides in Mexican strains of Trichoplusia ni (Hubner) exposed to Bacillus thuringiensis. J. Invertebr. Pathol. 98, 218-227. 
  104. Ueda, K., Imamura, M., Satto, A. and Sato, R. 2005. Purification and cDNA cloning of an insect defensin from larvae of the longicorn beetle, Acalolepta luxuriosa. Appl. Entomol. Zool. 40, 335-345. 
  105. Vizioli, J., Bulet, P., Charlet, M., Lowenberger, C., Blass, C., Muller, H. M., Dimopoulos, G., Hoffmann, J., Kafatos, F. C. and Richman, A. 2000. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. 9, 75-84. 
  106. Vizioli, J., Richman, A. M., Uttenweiler-Joseph, S., Blass, C. and Bulet, P. 2001. The defensin peptide of the malaria vector mosquito Anopheles gambiae: antimicrobial activities and expression in adult mosquitoes. Insect Biochem. Mol. Biol. 31, 241-248. 
  107. Volkoff, A. N., Rocher, J., d'Alencon, E., Bouton, M., Landais, I., Quesada-Moraga, E., Vey, A., Fournier, P., Mita, K. and Devauchelle, G. 2003. Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-like genes from lepidopteran insects?. Gene 319, 43-53. 
  108. Wachinger, M., Kleinschmidt, A., Winder, D., von, Pechmann, N., Ludvigsen, A., Neumann, M., Holle, R., Salmons, B., Erfle, V. and Brack-Werner, R. 1998. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J. Gen. Virol. 79, 731-740. 
  109. Wang, J., Hu, C., Wu, Y., Stuart, A., Amemiya, C., Berriman, M., Toyoda, A., Hattori, M. and Aksoy, S. 2008. Characterization of the antimicrobial peptide attacin loci from Glossina morsitans. Insect Mol. Biol. 17, 293-302. 
  110. Wang, Q., Liu, Y., He, H. J., Zhao, X. F. and Wang, J. X. 2010b. Immune responses of Helicoverpa armigera to different kinds of pathogens. BMC Immunol. 11, 9. 
  111. Xu, X. X., Zhong, X., Yi, H. Y. and Yu, X. Q. 2012. Manduca sexta gloverin binds microbial components and is active against bacteria and fungi. Dev. Comp. Immunol. 38, 275-284. 
  112. Yamada, K. and Natori, S. 1993. Purification, sequence and antibacterial activity of two novel sapecin homologues from Sarcophaga embryonic cells: similarity of sapecin B to charybdotoxin. Biochem. J. 291, 275-279. 
  113. Yoe, S. M., Kang, C. S., Han, S. S. and Bang, I. S. 2006. Characterization and cDNA cloning of hinnavin II, a cecropin family antibacterial peptide from the cabbage butterfly, Artogeia rapae. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 144, 199-205. 
  114. Zhu, Y., Johnson, T. J., Myers, A. A. and Kanost, M. R. 2003. Identification by subtractive suppression hybridization of bacteria-induced genes expressed in Manduca sexta fat body. Insect Biochem. Mol. Biol. 33, 541-559. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

이 논문과 연관된 기능


DOI 인용 스타일