$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

호흡 알코올 농도 증가가 시야 및 가독시야에 미치는 영향
The Effects of Breath Alcohol Concentration Increase on Visual Field and Readable Visual Field 원문보기

한국안광학회지 = Journal of Korean Ophthalmic Optics Society, v.21 no.2, 2016년, pp.153 - 158  

정수아 (건양대학교 안경광학과) ,  남수경 (건양대학교 안경광학과) ,  김현정 (건양대학교 안경광학과)

초록
AI-Helper 아이콘AI-Helper

목적: 호흡 알코올 농도(BrAC) 증가가 시야 및 가독시야에 미치는 영향을 알아보고자 하였다. 방법: 20대 남성 23명(평균연령 $21.17{\pm}2.19$세, BMI $22.09{\pm}2.16$)을 대상으로 호흡 알코올 농도 0.05%와 0.08%에 도달에 필요한 섭취 알코올 양을 BAC(Blood Alcohol Concentration) Dosing Software를 이용하여 산정하고 섭취시킨 후, Vision Disk를 이용해 시야와 가독시야를 각각 측정하였다. 결과: 시야는 호흡 알코올 농도 0.00%에서 $74.41{\pm}15.97^{\circ}$, 0.05%에서 $64.98{\pm}17.93^{\circ}$, 0.08%에서는 $58.33{\pm}19.01^{\circ}$로 측정되었고(p=0.000), 가독시야는 0.00%에서 $21.93{\pm}12.71^{\circ}$, 0.05%에서 $17.41{\pm}11.36^{\circ}$, 0.08%에서는 $14.26{\pm}9.93^{\circ}$로 측정되어(p=0.006), 호흡 알코올 농도가 증가할수록 시야와 가독시야 모두 감소하였다. 결론: 음주로 인한 호흡 알코올 농도 상승은 시야 및 가독시야를 감소시켜 안전사고 발생의 원인이 될 수 있으므로 이에 대한 경각심이 필요하다.

Abstract AI-Helper 아이콘AI-Helper

Purpose: This study was aimed to investigate effects of breath alcohol concentration (BrAC) increase on visual field and readable visual field. Methods: 23 males in 20s (average age $21.17{\pm}2.19years$, body mass index (BMI) $22.09{\pm}2.16$) were selected and administered th...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 또한 기존의 알코올 섭취가 시기능에 미치는 영향에 관한 선행연구는 대부분 알코올 섭취량 혹은 알코올 섭취 후 시간 경과에 따른 변화에 관하여 연구되었다.[14,15] 현행 도로교통법상 음주 운전 단속의 음주량 측정 기준은 혈중 알코올 농도를 기준으로 하고 있지만[16] 현실적인 이유로 간접적으로 호흡 알코올 농도를 기준으로 측정하고 있기에[17] 본 연구에서는 호흡 알코올 농도를 일정한 수준으로 제한한 상태에서 주변부의 물체와 문자인식을 위한 시야와 가독시야(readable visual field)에 미치는 알코올의 영향에 관하여 알아보기 위해 호흡 알코올 농도를 알코올 섭취전인 0.00% 상태와 다양한 국가의 음주 운전 단속 기준을 고려하여 결정한 0.05%, 0.08%로[18-19] 제한하고 시야와 가독시야를 각각 측정하고 비교하였다.
  • 또한 알코올 섭취 시 갑작스러운 섭취로 인한 급진적인 호흡 알코올 농도 증가를 방지하고자 총 알코올 섭취 용량을 6회로 분할하여 5분 간격으로 섭취하게 하였다.[5] 호흡 알코올 농도의 최고치는 일반적으로 알코올 섭취 후 30~60분 무렵에 도달하는 것으로 알려져 있기 때문에[26,27] 마지막 알코올을 섭취한 15분 후부터 5분 간격으로 호흡 알코올 농도의 안정화 상태를 확인한 후 0.05%, 0.08%로 확인 되었을 때 시야와 가독시야를 측정하였다. 호흡 알코올 농도 측정에는 호흡 가스 분석법(breath gas analysis) 원리를 적용한 휴대용 음주 측정기(AL-2000, Sentech Korea, Korea)를 사용하였다.
  • 대상자들의 알코올 섭취 부담을 줄이고 보다 정확한 검사를 위해 검사 전 4시간의 금식과 48시간 이상의 금주를 하도록 하였다. 검사는 2회에 나누어 진행하였고, 첫 번째 방문에는 알코올을 섭취하기 전인 호흡 알코올 농도 0.00%와 0.05%의 상태에서, 두 번째 방문 시에는 0.08%의 호흡 알코올 농도 상태에서 검사를 시행하였다. 또한 알코올 섭취 시 갑작스러운 섭취로 인한 급진적인 호흡 알코올 농도 증가를 방지하고자 총 알코올 섭취 용량을 6회로 분할하여 5분 간격으로 섭취하게 하였다.
  • 대상자들의 알코올 섭취 부담을 줄이고 보다 정확한 검사를 위해 검사 전 4시간의 금식과 48시간 이상의 금주를 하도록 하였다. 검사는 2회에 나누어 진행하였고, 첫 번째 방문에는 알코올을 섭취하기 전인 호흡 알코올 농도 0.
  • 또한 시야측정 시 각각의 귀 방향을 90°로 정하고, Focus marker가 위치한 정면을 0°로 하여 측정하였으며, 0°에 가까울수록 시야가 좁은 것으로 판단하였다.
  • 08%의 호흡 알코올 농도 상태에서 검사를 시행하였다. 또한 알코올 섭취 시 갑작스러운 섭취로 인한 급진적인 호흡 알코올 농도 증가를 방지하고자 총 알코올 섭취 용량을 6회로 분할하여 5분 간격으로 섭취하게 하였다.[5] 호흡 알코올 농도의 최고치는 일반적으로 알코올 섭취 후 30~60분 무렵에 도달하는 것으로 알려져 있기 때문에[26,27] 마지막 알코올을 섭취한 15분 후부터 5분 간격으로 호흡 알코올 농도의 안정화 상태를 확인한 후 0.
  • 본 연구는 호흡 알코올 농도를 알코올 섭취 전인 0.00%와 다양한 국가의 음주단속 기준을 고려하여 0.05%와 0.08%로 제한한 상태에서 호흡 알코올 농도증가에 따른 시야와 가독시야 변화를 알아보았다. 본 연구 결과 호흡 알코올 농도 상승에 따라 시야와 가독시야 모두 감소하는 경향을 보였고, 가독시야는 0.
  • 1). 시야측정은 대상자에게 Vision Disk의 중앙에 위치한 Focus marker를 주시하고 항상 시선을 고정하도록 주지시킨 상태에서 Vision Disk에 포함되어 있는 카드를 핸들에 고정시킨 후 보다 정확한 검사를 위해 저감부위인 귀 쪽부터 고감부위인 코 쪽으로 핸들을 천천히 움직이며 측정하였다. 또한 대상자의 시선이 항상 Focus marker를 향하고 있는지 확인 하고 환자에게 Focus marker에 시선을 향할 것을 지속적으로 언급하였다.
  • 처음으로 카드가 보일 때 대답하도록 지시하여 대상자가 대답하였을 때 핸들이 가리키는 눈금이 시야 값이 되고, 동일한 방법으로 측정하되 카드에 적힌 글자를 대상자가 큰 소리로 정확히 문자를 읽었을 때 핸들이 가리키는 눈금 값을 가독시야 값으로 하였으며, 우안과 좌안을 각각 측정하였다.

대상 데이터

  • 사전 조사를 통하여 본 연구의 취지에 동의하고 다음의 조건을 만족하는 자를 대상자로 선정하였다. 성별의 차이에 따른 호르몬 분비와 알코올 분해능력 및 대사기능의 차이로 인한 오차발생을 최소화하기 위해[20-22] 20대 성인 남성으로서 전신질환 및 안과적 질환이 없고, 정상적인 양안시기능을 가지며, 원거리와 근거리 교정시력이 20/25 이상, 주량이 소주 1병(360 ml, 16.
  • 성별의 차이에 따른 호르몬 분비와 알코올 분해능력 및 대사기능의 차이로 인한 오차발생을 최소화하기 위해[20-22] 20대 성인 남성으로서 전신질환 및 안과적 질환이 없고, 정상적인 양안시기능을 가지며, 원거리와 근거리 교정시력이 20/25 이상, 주량이 소주 1병(360 ml, 16.7~21%) 정도이고, BMI(Body Mass Index) 수치가 정상범위(18.5~24.9)[23]인 23명(평균연령 21.17±2.19세, BMI 22.09±2.16)의 46안을 대상으로 하였다.

데이터처리

  • 통계처리는 대상자 23명의 46안을 대상으로 측정한 결과를 SPSS 19.0을 이용하여 일원배치분산분석(ANOVA)을 실시하였으며, 신뢰도 95%를 기준으로 유의수준 p<0.05이면 통계적으로 유의하다고 판단하였다.

이론/모형

  • 대상자의 단안시야와 가독시야 측정에는 Vision Disk(Hubbard Scientific, USA)를 이용하였다(Fig. 1). 시야측정은 대상자에게 Vision Disk의 중앙에 위치한 Focus marker를 주시하고 항상 시선을 고정하도록 주지시킨 상태에서 Vision Disk에 포함되어 있는 카드를 핸들에 고정시킨 후 보다 정확한 검사를 위해 저감부위인 귀 쪽부터 고감부위인 코 쪽으로 핸들을 천천히 움직이며 측정하였다.
  • 호흡 알코올 농도 0.05%, 0.08% 도달에 각각 필요한 알코올 섭취 용량은 Watson 공식(체수분량을 고려하여 수정된 위드마크 공식)[24]을 기반으로 개발된 BAC(Blood Alcohol Concentration) Dosing Software(John Curtin's Addiction Research Laboratory Wiki in the Department of Psychology at the University of Wisconsin)[25]를 이용해 산정하고 투여했다.
  • 08%로 확인 되었을 때 시야와 가독시야를 측정하였다. 호흡 알코올 농도 측정에는 호흡 가스 분석법(breath gas analysis) 원리를 적용한 휴대용 음주 측정기(AL-2000, Sentech Korea, Korea)를 사용하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
시야란? 시야(visual field)는 각 눈으로 일정한 목표물을 주시하 면서 동시에 인지 가능한 외계 물체의 한계를 시각으로 나타낸 것으로 주변시(peripheral vision)를 이용해 외계의 물체를 발견하고 이를 통해 상호 위치관계를 파악하기 때문에 중심시(central vision) 못지않게 중요하며, 시야검사를 통해 그 변화를 확인해 안질환 및 뇌질환의 진단 예후와 치료판정에도 활용하고 있다. 이러한 시야에 영향을 미치는 것으로는 안와의 해부학적 구조, 굴절상태, 동공의 크기, 연령, 성별, 신체 상태, 지적수준, 시표크기, 검사거리, 시표의 색채 및 명도, 시야계면의 조도, 시표의 출현방향, 시야검사 경험 횟수, 검사자의 기술 및 시야검사의 순 응상태 등이 알려져 있다.
음주의 긍정적인 영향은? 현대사회의 회식문화, 복잡한 사회구조 등의 다양한 이유로 음주는 증가하는 추세이다. 비록 음주가 원만한 대인 관계를 유지하고 삶의 활력소로 작용하는 등의 긍정적인 측면을 가지고 있지만, 알코올은 세계적으로 가장 흔하게 접할 수 있는 중독성 및 남용성 약물로 신체적, 정신적 질병 유발 원인으로 작용하기도 하고 지적능률 감소, 자극에 대한 감지와 반응, 운동기능의 감소 뿐 아니라 의료비 부담 상승및 각종 사고와 범죄 발생의 원인이 될 수 있기 때문에 미성년자의 음주와 일정 수준 이상의 음주 상태에서 행해지는 운전에 관해서는 법적으로 제한을 하고 있다. [1-7]
호흡 알코올 농도 증가에 따른 시야와 가독시야 변화 측정 결과는? 08%로 제한한 상태에서 호흡 알코올 농도 증가에 따른 시야와 가독시야 변화를 알아보았다. 본 연구 결과 호흡 알코올 농도 상승에 따라 시야와 가독시야 모두 감소하는 경향을 보였고, 가독시야는 0.00%와 0.08%는 통계적으로 유의한 차이가 있는 것으로 나타났고, 시야는 호흡 알코올 농도 0.05%와 0.08% 모두 알코올 섭취 전(0.00%)과 통계 적으로 유의한 차이를 보이는 것으로 나타났다. 이와 같이알코올 섭취로 인한 호흡 알코올 농도 상승이 시야와 가독시야를 감소시키는 요인으로 작용하는 것으로 나타났기때문에 음주 후에는 인식할 수 있던 주변 물체를 인식할수 없게 될 수 있어 이로 인해 발생할 수 있는 안전사고에 주의하여야 할 필요성이 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (34)

  1. GFWRI(Gyeonggido Family & Women Resarch Institute). Korean's drinking culture and family, 2012. http://gfwri.kr/2005home/program/issue/data/issue4223423187.html(12 May 2016). 

  2. Statistics Korea. Factory status of alchol liquors, 2016. http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd2824(22 May 2016). 

  3. Lehtinen I. Nyrke T, Lang A, Pakkanen A, Keskinen E. Individual alcohol reaction profiles. Alcohol. 1985;2(3):511-513. 

  4. Lee HJ. The effects of alcohol on eye refraction. J Korean Ophthalmic Opt Soc. 2001;6(2):139-144. 

  5. Na DR. The effects of alcohol on eye movement. Master Thesis. Yonsei University, Seoul. 1998;8-9. 

  6. Nam CH. Changes of psychomotor function due to alcohol ingestion. Chung Ang J Med. 1975;1(1):87-95. 

  7. Ryback RS. The continuum and specificity of the effects of alcohol on memory: A review. Q J Stud Alcohol. 1971; 32(4):995-1016. 

  8. Song BJ. The normal visual field in Korean people. J Korean Ophthalmol Soc. 1978;19(4):377-383. 

  9. Kim MH. Studies on the normal visual field of koreans. Master Thesis. Ewha Womans University, Seoul. 1982;1-30. 

  10. Johnson CA, Keltner JL. Incidence of visual field loss in 20,000 eyes and its relationship to driving performance. Arch Ophthalmol. 1983;101(1):371-375. 

  11. Shin KY, Kyung SE. Analysis of visual field defect in patient with brain lesion. J Korean Ophthalmol Soc. 2015; 56(9):1439-1445. 

  12. Park JH, Choi KR. The association between corneal biomechanical properties and progression of visual field loss in normal tension glaucoma. J Korean Ophthalmol Soc. 2013;54(11):1757-1766. 

  13. Yoon GJ, Chung JW, Ha TS. Bilateral visual field defect following laser in situ keratomileusis(LASIK). J Korean Ophthalmol Soc. 2001;42(2):386-391. 

  14. Kim SY, Moon BY, Lee SH, Cho HG. Time-dependent changes of ocular functions after alcohol ingestion. J Korean Ophthalmic Opt Soc. 2009;14(1):133-138. 

  15. Kim SY, Lee SH, Moon BY, Yu DS, Cho HG. Timedependent changes of visual acuity after alcohol ingestion. J Korean Ophthalmic Opt Soc. 2008;13(2):59-62. 

  16. Lee YJ. A Study on the nature and applicable range of Widmark Equation. Journal of Police and law. 2008;6(1): 116-137. 

  17. Ok B. The study on alcohol consumption measures in drunk driving charges. Master Thesis. Chung-Ang University, Seoul. 2011;29. 

  18. Choi CH. A study on Japan' legislative policy to prevent drunken driving. The Korean Association of Police Science Review. 2011;27:173-204. 

  19. Lee SK. A comparative legal study on the restrictions of drinking driving, and its criminal and administrative adjudication, and the appeal procedure-Focused on the legislations of the United States-. The Yonsei Law Review. 2011;21(4):233-263. 

  20. Frezza M, di Padova C, Pozzato G, Terpin M, Baraona E, Lieber CS. High blood alcohol levels in women: The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med. 1990;322(2):95-99. 

  21. Mishra L, Sharma S, Potter JJ, Mezey E. More rapid elimination of alcohol in women as compared to male siblings. Alcohol Clin Exp Res. 1989;13(6):752-754. 

  22. Brick J, Nathan PE, Westrick E, Frankenstein W, Shapiro A. The effect of menstrual cycle on blood alcohol levels and behavior. J Stud Alcohol. 1986;47(6):472-477. 

  23. Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet. 2000;39(3):215-231. 

  24. Watson PE, Watson ID, Batt RD. Prediction of blood alcohol concentrations in human subjects. Updating the Widmark Equation. J Stud Alcohol. 1981;42(7):547-556. 

  25. Curtin JJ, Fairchild BA. Alcohol and cognitive control: implications for regulation of behavior during response conflict. J Abnorm Psychol. 2003;112(3):424-436. 

  26. Katoh Z. Slowing effects of alcohol on voluntary eye movements. Aviat Space Environ Med. 1988;59(7):606-610. 

  27. Jantti V, Lang AH, Keskinen E, Lehtinen I, Pakkanen A. Acute effects of intravenously given alcohol on saccadic eye movements and subjective evaluations intoxication. Psychopharmacology(Berl). 1983;79(2):251-255. 

  28. Nam SK. The effect of breath alcohol concentration on visual function. Master Thesis. Konyang University, Daejeon. 2014;12-89. 

  29. Park SJ. A study on analysis of driving characteristics of drunken drivers using virtual reality. Master Thesis. Hanbat National University, Daejeon. 2011;5-6. 

  30. Kim JM. The effects of drugs, including alcohol, on ocular health and contact lens wear. J Korean Ophthalmic Opt Soc. 2000;5(1):73-81. 

  31. Jellinek EM, McFarland RA. Analysis of psychological experiments on the effects of alcohol. Q J Stud Alcohol. 1940;1:272-371. 

  32. Chang JH, Chun BY, Shin JP. The stereoscopic acuity in patients with unilateral or bilateral visual field defects. J Korean Ophthalmol Soc. 2014;55(5):734-739. 

  33. Lee KY. Effect of reduced visual acuity and contrast sensitivity on driving. Master Thesis. Catholic University of Daegu, Daegu. 2016;5-6. 

  34. Colson ZW. The effect of alcohol on vision: An experimental investigation. J Am Med Assoc. 1940;115(18): 1525-1527. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로