$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수학적 사고력에 관한 인지신경학적 연구 개관
A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability 원문보기

인지과학 = Korean journal of cognitive science, v.27 no.2, 2016년, pp.159 - 219  

김연미 (홍익대학교 공과대학)

초록
AI-Helper 아이콘AI-Helper

수학적 사고력은 STEM(science, technology, engineering, mathematics) 분야에서의 학업적인 성취와 과학기술의 혁신에서 중요한 역할을 하고 있다. 본 연구에서는 학제 간 연구 분야인 수 인지(numerical cognition) 및 수학적 인지와 관련된 최근의 인지신경학적 연구 결과들을 종합하여 개관하였다. 첫째로 수학적 사고의 기초가 되는 뇌 기제의 위치와 정보처리 메커니즘을 확인하였다. 수학적 사고는 영역 특정적(domain specific)인 기능인 수 감각과 시공간적 능력뿐만 아니라 영역 일반적(domain general)인 기능인 언어, 장기기억, 작업 기억(working memory) 등을 기초로 하며 이를 토대로 추상화, 추론 등의 고차원적인 사고를 한다. 이 중에서 수 감각과 시공간적 능력은 두정엽(parietal lobe)을 기반으로 한다. 두 번째로는 수학적 사고 능력에서 관찰되는 개인 차이에 대하여 고찰하였다. 특히 수학 영재들의 신경학적인 특성을 신경망 효율성(neural efficiency)의 관점에서 고찰해 보았다. 그 결과 높은 지능이란 두뇌가 얼마나 많이 일하느냐가 아니라 얼마나 효율적으로 일하는가에 달렸다는 사실을 확인하였다. 수학 영재들의 또 다른 특성은 좌반구와 우반구 간의 연결과 반구 내에서 전두엽과 두정엽의 연결이 뛰어나다는 사실이다. 세 번째로는 학습과 훈련, 그리고 성장에 따른 변화 및 발전에 대한 분석이다. 개인이 성장하며, 수학 학습과 훈련을 하게 될 때 이에 따라 두뇌 피질에서도 변화가 반영되어 나타난다. 그 변화를 피질에서의 활성화 수준의 변화, 재분배, 구조적 변화라는 관점에서 해석하였다. 이 중에서 구조적 변화는 결국 신경 가소성(neural plasticity)을 의미한다. 마지막으로 수학적 창의성은 수학적 지식(개념)을 기초로 하여 수학적 개념들을 결합하는 단계가 요구되며, 그 후 결합된 개념들 중에서 심미적인 선택을 통해 수학적 발명(발견)으로 연결된다. 전문성이 높아질수록 결합과 선택이라는 두 단계가 더욱 중요해진다.

Abstract AI-Helper 아이콘AI-Helper

Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numeric...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
아래 두정엽과 후 두정 소엽들은 어떤 활동을 할 때 활성화 되는가? 공간적 사고와 자극은 후두정엽(posterior parietal lobe)을 활성화 한다. 두정 내 고랑을 비롯하여 아래 두정엽과 후 두정 소엽들은 수학적 사고의 기초가 되는 영역인데, 인간이 성장하면서 사칙연산을 하고, 방정식과 같은 대수 문제를 풀 때 그리고 전개도를 접는 3차원 도형을 상상할 때, 혹은 미분, 적분과 같은 고차적인 사고를 할 때도 이 영역들이 활성화된다(Spelke, 2003).
경두개 직렬 자극방식이란 무엇인가? 15명의 대학생들이 6일 간의 학습과정동안 인위적인 수 체계(그림 2)를 학습하였는데 이 기간 동안 이들의 좌우 두정엽부위에 비 침습성(noninvasive) 자극을 주었을 때 기억력과 수 체계에 대한 학습효과가 높아졌다. 연구진은 경두개 직렬 자극(transcranial direct current stimulation) 방식을 사용했는데 이것은 두정엽 부위의 뉴런 집단의 흥분을 강화하거나(양극자극, anodal stimulus) 억제하는(음극자극, cathodal stimulus) 방식으로 1mA의 약한 전류를 통해서 좌우반구를 반대로 자극하는 것이다. 숫자 Stroop task와 수직선에 숫자(인위적으로 학습한 숫자와 일상의 숫자)를 대응시키는 과제들을 통해 평가했을 때 가장 학습효과가 높은 경우가 우반구 두정엽에는 양극자극을 가하고 좌반구에는 음극 자극을 가한 경우였다.
수 인지 혹은 수학 인지라는 연구 분야에서는 무엇을 연구하는가? 이와 더불어 ‘수 인지(numerical cognition)’ 혹은 ‘수학 인지(mathematical cognition)’라는 학제 간 연구 분야도 탄생하였다. 여기서는 인간의 두뇌가 숫자와 수학적인 계산들을 어떻게 표상하는지를 이해하고, 수학적 능력의 기저에는 무엇이 놓여있는지, 산술적인개념이나 스킬을 학습하는데 영향을 미치는 요인들은 무엇인가를 연구한다. 그 외에도 다양한 테크놀로지를 사용하여 수학적 지식4)의 생물학적인 기초를 이해하고 나아가서는 고차원적 사고와 수학적 영감의 본질을 밝히려는 시도까지 하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (109)

  1. 김연미 (2013). 수학적 사고에 동원되는 두뇌영역들과 이의 교육학적 의미. 한국수학교육학회지 시리즈 A, 52(1), 19-41. 

  2. 김연미 (2015). 공과대학 신입생들의 공간 시각화 능력, 수학 성취도와 언어 성취도 사이의 관계 및 성별 차이에 관한 연구. 한국수학교육학회지 시리즈 E, 29(3), 553-571. 

  3. 이재호, 진석언, 류지영 (2010). 창의.인성을 갖춘 미래사회 영재 판별방법 연구. 한국과학 창의재단. 

  4. Andres, M., Pelgrims, B., Michaux, N., Olivier, E., & Pesenti, M. (2011). Role of distinct parietal areas in arithmetic: an fMRI-guided TMS study. NeuroImage, 54(4), 3048-3056. 

  5. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature reviews neuroscience, 9(4), 278-91. 

  6. Arsalidou, M., & Taylor, M. J. (2011). Is 2+24? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage, 54(3), 2382-93. 

  7. Aydin, K., Ucar, A., Oguz, K., Okur, O., Agayev, A., Unal, Z., Yilmaz, S., & Ozturk, C. (2007). Increased gray matter density in the parietal cortex of mathematicians: A Voxel-Based Morphometry study. American Journal of Neuroradiology, 28(10), 1859-1864. 

  8. Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thinking (pp. 129-163). Cambridge, UK: Cambridge University Press. 

  9. Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullen, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148-1150. 

  10. Bodner, G., & Guay, R. (1997). Purdue spatial visualization Test-Rotation. The Chemical Educator, 2(4), 1-14. 

  11. Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 93(7), 404-431. 

  12. Casey, M. B., Pezaris, E., & Nuttall, R. L. (1992). Spatial ability as a predictor of math achievement: the importance of sex and handedness patterns. Neuropsychologia, 30(1), 35-40. 

  13. Cattell, R. B. (1971). Abilities: Their structure, growth, and action. New York: Houghton Mifflin. 

  14. Changeux, J. P., & Conne, A. (2002). 정신, 물질, 그리고 수학. (강주현 역). 서울: 경문사. 

  15. Conway, A., Kane, M., & Engle, R. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Science, 7(12), 547-552. 

  16. Crutch, S. & Warrington, E. K. (2005). Abstract and concrete concepts have structurally different representational frameworks. Brain, 128(3), 615-627. 

  17. Dehaene, S. (1997). The number sense. Oxford University Press, New York, NY: Penguin. 

  18. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3-6), 487-560. 

  19. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: behavioral and brainimaging evidence. Science, 284(5416), 970-974. 

  20. Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex mathematics - a fMRI study. Cognitive Brain Research, 18(1), 76-88. 

  21. Desco, M., Navas-Sanchez, F. J., Sanchez-Gonzalez, J., Reig, S., Robles, O., Franco, C., Guzman-De-Villoria, J. A., Garcia-Barreno, P., & Arango, C. (2011). Mathematically gifted adolescents use more extensive and more bilateral areas of the fronto-parietal network than controls during executive functioning and fluid reasoning tasks. Neuroimage, 57(1), 281-292. 

  22. Donaldson, H. (2013). The growth of brain: A study of the nervous system in relation to education. London: Forgotten Books. (Original work published 1895) 

  23. Dowker, A. D. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. Hove: Psychology Press. 

  24. Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In (D. Tall, Ed.), Advanced Mathematical Thinking, Dordrecht: Kluwer, 95-126. 

  25. Duncan, J., Seitz, R., Kolodny, J., Bor, D., Herzog, H., & Ahmed, A. (2000). A neural basis for general intelligence. Science, 289(5478), 457-460. 

  26. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305-307. 

  27. Eliot, J., & Smith, T. M. (1983). An international directory of spatial tests. Windsor, UK: NFER-Nelson. 

  28. Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8(10), 307-314. 

  29. Fryer, S. L., Frank, L. R., Spadoni, A. D., Theilmann, R. J., Nagel, B. J., Schweinsburg, A. D., & Tapert, S. F. (2008). Microstructural integrity of the corpus callosum linked with neuropsychological performance in adolescents. Brain Cognition, 67(2), 225-233. 

  30. Gallagher, A., Levin, J., & Cahalan, C. (2002). Cognitive patterns of gender differences on mathematics admission tests. Educational Assessment, 8(1), 27-41. 

  31. Geake, J., & Hansen, P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage, 26(2), 255-264. 

  32. Geary, D. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4-15. 

  33. Gerstmann, J. (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia, and acalculia: local diagnostic value. Archives of Neurology and Psychiatry, 44(2), 398-408. 

  34. Hadamard, J. (1975). 수학분야의 발명의 심리학. (정계섭 역). 서울: 범양사 출판부. 

  35. Haier, R., Siegel, B. V., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: a positron emission tomographic study. Brain Research, 570(1), 4-143. 

  36. Holyoak, K. J., & Morrison, R. (2005). The Cambridge Handbook of Thinking and Reasoning. Cambridge: University Press. 

  37. Hoppe, C., Fliessbacha, K., Stausberga, S., Stojanovica, J., Trautner, P., Elgera, C., & Weber, B. (2012). A key role for experimental task performance: Effects of math talent, gender and performance on the neural correlates of mental rotation. Brain and Cognition, 78(1), 14-27. 

  38. Hu, Y., Geng, F., Tao, L., Hu, N., Du, F., Fu, K., & Chen, F. (2011). Enhanced white matter tracts integrity in children with abacus training. Human Brain Mapping, 32(1), 10-21. 

  39. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435-448. 

  40. Iucculano, T., & Kadosh, C. R. (2013). The mental cost of cognitive enhancement. The Journal of Neuroscience, 33(10), 4482-4486. 

  41. Jaeggi, S., Buschkuehl, M., Jonides, J., & Perrig, W. (2008). Improving fluid intelligence with training on working memory. PNAS, 105(19), 6829-6833. 

  42. Jung, R., & Haier, R. (2007). The parieto - frontal integration theory of intelligence: converging neuroimging evidence. Behavioral & Brain Sciences, 30(2), 135-187. 

  43. Kadosh, C. R., Bahrami, B., Walsh, V., Butterworth, B., Popscu, T., & Price, C. (2011). Specalization in the human brain: The case of numbers. Frontiers in human Neuroscience, 5(62), 1-9. 

  44. Kadosh, C. R., Henic, A., & Rubinsten, O. (2008). Are Arabic and verbal numbers processed differently?. Journal of Experimental Psychology: Learning, Memory and Cognition, 34(6), 1377-1391. 

  45. Kadosh, C. R., Kadosh, C. K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation dependent and independent representations of numbers in the parietal lobes. Neuron 53(2), 307-314. 

  46. Kodash, C. R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84(2), 132-147. 

  47. Kadosh, C. R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long lasting changes in numerical competence. Current Biology, 20(22), 2016-2020. 

  48. Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92(1), 109-129. 

  49. Klingberg, T. (2006). Development of a superior frontalintraparietal network for visuo-spatial working memory. Neuropsychologia, 44(11), 2171-2177. 

  50. Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J., & Subramaniam, K. (2006). The preparedmind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882-890. 

  51. Krawczky, D., Mcclelland, M., & Donovan, C. (2011). A hierarchy for relational reasoning in the prefrontal cortex. Cortex, 47(5), 588-597. 

  52. Kroger, J. K., Nystrom, L. E., Cohen, J. D., & Johnson-Laird, P. N. (2008). Distinct neural subtrates for deductive and mathematical processing. Brain Research, 1243, 86-103. 

  53. Kroger, J. K., Saab, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cerebral Cortex, 12(5), 477-485. 

  54. Kuhlenschmidt, S. (2006). My mother's response to stroke. Retrieved from http://people.wku.edu/sally.kuhlenschmidt/stroke/ with permission. 

  55. Kyllonen, P., & Christal, R. (1990). Reasoning ability is (little more than) working memory capacity?!. Intelligence, 14(4), 389-433. 

  56. Landau, S., Schumacher, E., Garavan, H., Druzgal, T. J., & D'Esposito, M. (2004). A functional MRI study of the influence of practice on component processes of working memory. Neuroimage, 22(1), 211-221. 

  57. Le Doux, J. E. (2002). Synaptic self: How our brains become who we are. New York, NY: Viking. 

  58. Lee, K. H., Choi, Y. Y., Gray, J., Cho, S. H., Chae, J. H., Lee, S., & Kim, K. (2005). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage, 29(2), 578-586. 

  59. Linn, M. C., & Peterson, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 479-498. 

  60. Lippa, R., Collaer, M., & Peters, M. (2010). Sex differences in mental rotation and line angle judgement are positively associated with gender equality and economic development across 53 nations. Archives in Sexual Behaviors, 39(4), 990-997. 

  61. Lohman, D. F. (1979). Spatial ability: A review and reanalysis of the correlational literature (Tech. Rep. No. 8). Stanford, CA: Stanford University. Aptitude Research project, School of Education. 

  62. Lucculano, T., Rosenberg-Lee, M., Richardson, J., Tenison, C., Fuchs, L., Supekar, K., & Menon, V. (2015). Cognitive tutoring induces widespread neuroplasticity and remidiates brain function in children with mathematical learning disabilities. Nature Communications, 6(8453). doi: 10.1038/ncomms9453. 

  63. Maguire, E., Woollett, K., & Spiers, H. (2006). London Taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091-1101. 

  64. Martinez, M. E. (2000). Education as the cultivation of intelligence. Mahwah, New Jersey: Lawrence Erlbaum Associates. 

  65. Matejko, A., Price, G. R., Mazzocco, M. M., & Ansari, D. (2013). Individual differences in left parietal white matter predict math scores on the Preliminary Scholastic Aptitude Test. Neuroimage. 66(1), 604-610. 

  66. McGee, M. (1979). Human Spatial Abi1ities: Psychometric Studies and Environmental, Genetic, Hormonal, and Neurological Influences. Psychological Bulletin, 86(5), 889-918. 

  67. Mechner, F. (1958). Probability Relations within Response Sequences under Ratio Reinforcement. Journal of the Experimental Analysis of Behavior, 1(2), 109-21. 

  68. Menon, V. (2014). Arithmetic in the child and adult brains. In C. Kodash & A. Dowker (Eds.), The Oxford Handbook of Mathematical Cognition (pp. 1-23). Oxford: Oxford University Press. 

  69. Monti, M., Parsons, L., & Osherson, D. (2012). Thought beyond language: Neural dissociations of algebra and natural language. Psychological Science, 20(10), 1-9. 

  70. Nagy, Z., Westerberg, H., & Klingberg, T. (2004): Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 1227-1233. 

  71. Navas-Sanchez, F., Aleman-Gomez, Y., Sanchez-Gonzales, J., Villoria, G., Franco, C., Robles, O., Arango, C., & Desco, M. (2014). Whitematter microstructure correlates of mathematical giftedness and intelligence quotient. Human Brain Mapping, 35(6), 2619-2631. 

  72. Newman, S. D., & Just, M. A. (2005). The neural bases of intelligence: a perspective based on functional neuroimaging. In J. Sternberg and J. Pretz (Eds.), Cognition and Intelligence: Identifying the Mechanisms of the Mind (pp. 88-103). New York: Cambridge University Press. 

  73. Nisbet, R., Blair, J., Dickens, W., Halpern, D., Flynn, J., & Tuckheimer, E. (2012). Intelligence: New findings and theoretical development. American Psychological Association, 67(2), 130-159. 

  74. Noppeney, U., & Price, C. J. (2004). Retrieval of abstract semantics. NeuroImage, 22(1), 164-170. 

  75. O'Boyle, M., Cunnington, R., Silk, T., Vaughan, D., Jackson, G., Syngeniotis, A., & Egan, G. (2005). Mathematically gifted male adolescents activate a unique brain network during mental rotation. Cognitive Brain Research, 25(2), 583-587. 

  76. Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology. 45(3), 255-287. 

  77. Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 116(1), 39-52. 

  78. Peters, M., Lehmann, W., Takahira, S., Takeuchi, Y., & Jordan, K. (2006). Mental rotation test performance in four cross cultural samples (n3367): Overall sex differences and the roll of academic program in performance. Cortex, 42(7), 1005-1014. 

  79. Poincare, H. (1908). Science et Methode. Paris: Flammarion (translation in 1913). 

  80. Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Ravens Progressive Matrices Test. Cognitive Psychology, 33(1), 43-63. 

  81. Prescott, J., Gavrilescu, M., Cunnington, R., O''Boyle, M. W., & Egan, G. F. (2010). Enhanced brain connectivity in math-gifted adolescents: An fMRI study using mental rotation. Cognitive Neuroscience, 1(4), 277-288. 

  82. Preusse, F., van der Meer, E., Deshpande, G., Kreuger, F., & Wartenburger, I. (2011). Fluid intelligence allows flexible recruitment of parieto - frontal network in analogical reasoning. Frontiers in Human Neuroscience, 5(22), 1-14. 

  83. Renzulli, J. S. (1978). What Makes Giftedness? Reexamining a Definition. Phi Delta Kappan, 60(3), 180-184. 

  84. Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased specialization in the left inferior parietal cortex. Cerebral Cortex, 15(11), 1779-1790. 

  85. Rypma, B., Berger, J. Prabhakaran, B., Bly, B., Kimberq, D., Biswal, B., & E'spisto, M. (2006). Neural correlates of cognitive efficiency. NeuroImage, 33(3), 969-979. 

  86. Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. NeuroImage, 27(1), 188-200. 

  87. Schmithorst, V. J., Holland, S. K. (2007). Sex differences in the development of neuroanatomical functional underlying intelligence found using Bayesian connectivity analysis. Neuroimage, 35(1), 406-419. 

  88. Schwanenflugel, P. J., & Shoben, E. J. (1983). Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(1), 82-102. 

  89. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 19(171), 701-703. 

  90. Simon, T. J. (1999). The foundations of numerical thinking in a brain without numbers. Trends in Cognitive Sciences, 3(10), 363-365. 

  91. Singh, H., & O'Boyle, M. W. (2004). Interhemispheric interaction during global-local processing in mathematically gifted adolescents, average-ability youth, and college students. Neuropsychology, 18(2), 371-377. 

  92. Sorby, S., & Baartmans, B. (1996). A course for the development of 3-D spatial visualization skills. Engineering Design Graphics Journal, 60(1), 13-20. 

  93. Sousa, D. (2009). How the gifted brain learns. New York, NY: Corwin. 

  94. Spelke, E. S. (2003). Core knowledge. In N. Kanwisher & J. Duncan (Eds.), Attention and Performance: Functional neuroimaging of visual cognition (pp. 29-56). New York: Oxford University Press. 

  95. Spinath, B., Freudenthaler, H. H., & Neubauer, A. C. (2010). Domain-specific school achieve ment in boys and girls as predicted by intelligence, personality and motivation. Personality and Individual Differences, 48(4), 481-486. 

  96. Squire, L. R. (1994). Declarative and non-declarative memory: Multiple brain systems supporing learning and memory. In D. L. Schacter & E. Tulving (Eds.), Memory Systems (pp. 203-231). Cambridge, MA: MIT Press. 

  97. Strong, S., & Smith, R. (2001). Spatial visualization: Fundamentals and trends in engineering graphics. Journal of Industrial Technology, 18(1), 1-6. 

  98. Tang, Y., Zhang, W., Chen, K., Feng, S., Ti, Y., Shen, T. Reiman, E., & Liu, Y. (2006). Arithemetic Processing in the brain shaped by cultures. PNAS, 103(28), 10775-10780. 

  99. Tanji, J. & Hoshi, E. (2008). Role of the lateral prefrontal cortex in executive behavioral control. Physiological Review, 88(1), 37-57. 

  100. Tomasi, D., Ernst, T., Caparelli, E. C., & Chang, L. (2004). Practice-induced changes of brain function during visual attention: a parametric fMRI study at 4 Tesla. Neuroimage, 23(4), 1414-1421. 

  101. Tostos, M., Hanscombe, K., Haworth, C., Davis, O., Petrill, S., Dale, P., Malykh, S. Plomin, R., & Kovas, Y. (2014). Why do spatial abilities predict mathematical performance?. Developmental Science, 17(3), 462-470. 

  102. Uller, C., & Lewis, J. (2009). Horses(Equus caballus) select the greater of two quantities in small numerical quantities. Animal Cognition, 12(5), 733-738. 

  103. van Nes, F., & Jan de Lange, J. (2007). Mathematics Education and Neuroscience: Relating spatial structures for the development of spatial sense and number sense. The Montana Council of Teachers of Mathematics, 4(2), 210-229. 

  104. Varma, S., McCandliss, B. D., & Schwartz, D. L. (2008). Scientific and pragmatic challenges for bridging education and neuroscience. Educational Researcher, 37(3), 140-152. 

  105. Virtue, S., Haberman, J., Clancy, Z., Parrish, T., & Jung-Beeman, M. (2006). Neural activity of inferences during story comprehension. Brain Research. 1084(1), 104-114. 

  106. von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868-873. 

  107. Vygotsky, L. S. (1962). Thought and language. Cambridge MA: MIT Press. 

  108. Whorf, B. L. (1940). Science and Linguistics. Technology Review, 42(6), 229-248. 

  109. Wynn, K. (1992). Addition and subtraction by human infant. Nature, 358(6389), 749-750. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로