$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰
Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility 원문보기

한국산업보건학회지 = Journal of Korean Society of Occupational and Environmental Hygiene, v.26 no.2, 2016년, pp.119 - 138  

최광민 (삼성전자 건강연구소)

Abstract AI-Helper 아이콘AI-Helper

Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review t...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
Al2O3 입자는 반도체 작업 환경 중 어떠한 공정에서 주로 발생하는가? Al2O3는 백색의 분말로서 육방정계(hexagonal system)의 결정구조를 가지며 IARC 및 ACGIH에서는 발암성 물질로 분류하고 있지 않다. 반도체 작업 환경에서는 ETCH 공정 및 METAL 공정에서 발생 가능성이 높은 것으로 확인되며 지금까지 보고된 Al2O3 입자의 독성을 Table 3에 정리하였다.
SiO2가 신체에 미치는 영향은? 사람의 기관지 상피 및 내피세포, 폐암종세포, 태아 신장세포 등에 독성을 나타내며, mouse 간독성, 급성염증 등이 발현되는데, 입경, 표면적 및 용량의존성을 가지며 특히 입경(100 nm 이하)이 생물학적 영향을 발현하는데 중요한 인자인 것으로 나타났다. 한편, 세포 종류 및 동물의 기관에 따라 SiO2 입자의 독성이 발현되지 않는다는 연구 사례도 확인되었다.
실리카의 결정구조에 따른 분류는? 반도체 제조 작업환경 내 존재 가능한 가장 대표적인 입자상 부산물인 실리카(SiO2)는 결정구조에 따라 결정형(crystalline)과 비결정형(amorphous)으로 분류된다. 결정형 SiO2의 경우 흡입 시 발암성 및 만성적 폐질환을 일으키며, 전통적 공정에서의 비결정형 SiO2는 독성이 낮은 것으로 알려져 있다(Bhaskar et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (93)

  1. Agency for Toxic Substances and Disease Research (ATSDR), 2005. Toxicological Profile for Tungsten. US Department of Health and Human Services, Public Health Service, Atlanta, GA 

  2. Alexander Jr FA, Huey EG, Price DT, Bhansail S. Real-time impedance analysis of silica nanowire toxicity on epithelial breast cancer cells. Aaalyst 2012;137: 5823-5828 

  3. American Conference of Government Industrial Hygienists (ACGIH) TLVs and BEIs. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinnati, OH, 2008 

  4. American Conference of Government Industrial Hygienists (ACGIH), 2001. Tungsten and Compounds 

  5. American Conference of Government Industrial Hygienists (ACGIH): 2015 TLV and BEIs. Cincinnati, OH, 2015 

  6. Baan R, Straif K, Grosse Y, Secretan B, Ghissassi FE, Cogliano V. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 2006;7:295-296 

  7. Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Hussain SM, Grover P. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 2009;24(3):245-251 

  8. Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J et al. Reproducible comet assay of amorphous silica nanoparticle detects no genotoxicity. Nano Lett 2008; 8(9):3069-3074 

  9. Bhaskar R, Li J, Xu L.A comparatively study of particle size dependency of IR and XRD methods for quartz analysis. Am Ind Hyg Asso J 1994; 55:605-609 

  10. Brun E, Barreau F, Veronesi G, Fayard B, Sorieul S et al. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelial. Part Fibre Toxicol 2014;11(1):13 

  11. Byaydich-Stolle LK, Speshock JL, Castle A, Smith M, Murdock RC, Hussain SM. Nanosized aluminum altered immune function. ACS Nano 2010;4(7):3661-3670 

  12. Chen X, Mao SS. Synthesis of titanium dioxide ( $TiO_{2}$ ) nanomaterials. J Nanosci Nanotechnol 2006;6:906-925 

  13. Cho WS, Cho M, Han BS, Cho M, Oh JH et al. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett 2007;175:24-33 

  14. Choi KM, Kim TH, Kim KS, Kim SG. Hazard identification of powder generated from a chemical vapor deposition process in the semiconductor manufacturing industry. J Occup Environ Hyg 2013;10(1):D1-D5 

  15. Choi KM, Yeo JH, Jung MK, Kim KS, Cho SH. Size, shape, and crystal structure of silica particles generated as by-products in the semiconductor workplace. J Korean Soc Occup Environ Hyg 2015a;25(1):36-44 

  16. Choi KM, An HC, Kim KS. Identifying the hazard characteristics of powder by-products generated semiconductor fabrication processes. J Occup Environ Hyg 2015b;12(2):114-122 

  17. Choi KM, Kim JH, Park JH, Kim KS, Bae GN. Exposure characteristics of nanoparticles as process by-products for the semiconductor manufacturing industry. J Occup Environ Hyg 2015c;12(8):D153-D160 

  18. Chu Z, Huang Y, Li L, Tao Q, Li Q. Physiological pathway of human cell damage induced by genotoxic crystalline silica nanoparticle. Biomaterials 2012;33:7540-7546 

  19. Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS et al. Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 2003;34:1369-1382 

  20. Duan Y, Liu J, Ma L, Li N, Liu H et al. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 2010;31:894-899 

  21. Falck GCM, Lindgerg HK, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H. Genotoxic effects of nanosized and fine $TiO_{2}$ . Hum Exp Toxicol 2009;28:339-352 

  22. Farcal LR, Uboldi C, Mehn d, Giudetti G, Nativo P et al. Mechanisms of toxicity induced by $SiO_{2}$ nanoparticles of in vitro human alveolar barrier: effects on cytokine production, oxidative stress induction, surfactant proteins A mRNA expression and nanoparticles uptake. Nanotoxicology 2012;7(6):1095-1110 

  23. Gehrke H, Fruhmesser A, Pelka J, Esselen M, Hecht LL et al. In vitro toxicity of amorphous silica nanoparticles in human colon carcinoma cells. Nanotoxicology 2012;793:274-293 

  24. Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 2007;115(3):397-402 

  25. Guichard Y, Schmit J, Darne C, Gate L, Goutet M et al. Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Ann Occup Hyg 2012; 56(5):631-644 

  26. Hackenberg S, Friehs G, Kessier M, Froelich K, Ginzkey C et al. Nanosized titanium dioxide particles do not induce DNA damage in human peripheral blood lymphocytes. Environ Mol Mutagen 2011;52(4):264-268 

  27. Hamilton Jr RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 2009;6:35 

  28. Hasegawa G, Shimonaka M, Ishihara Y. Differential genotoxicity of chemical properties and particle size of rate metal and metal oxide nanoparticles. J Appl Toxicol 2012;32(1):72-80 

  29. Hext PM, Tomenson JA, Thompson P. Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg 2005;49(6):461-472 

  30. Iglesias EG, Perez-Arizti JA, Marquez-Ramirez SG, Delgado-Buenrostro NL, Chirino YI et al. Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radic Biol Med 2014;73:84-94 

  31. Ino K, Natori I, Ichikawa A, Vrtis RN, Ohmi T. Plasma enhanced in situ chamber cleaning evaluated by extracted-plasma-parameter analysis. IEEE Transactions on Semiconductor Manufacturing 1996;9(2):230-240 

  32. International Agency for Research on Cancer(IARC). "IARC Monographs Volume 100C: Arsenic, Metals, Fibres and Dusts; A Review of Human Carcinogens. 2012 

  33. Ji B, Elder DL, Yang JH, Badowski PR, Karwacki EJ. Power dependence of $NF_{3}$ plasma stability for in situ chamber cleaning. J Appl Phys 2009;95:84446-84451 

  34. Jin C, Tang Y, Yang G, Li XL, Xu S et al. Cellular toxicity of $TiO_{2}$ nanoparticles in anatase and rutile crystal phase. Biol Trace Element Res 2011;141(1):3-15 

  35. Johnston CJ, Driscoll KE, Finkestein JN, Baggs R, O'Reilly MA et al. Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci 2000; 56:405-413 

  36. Karlsson HL, Gustafsson J, Cronholm P, Moller L. Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size. Toxicol Lett 2009;188:112-118 

  37. Keith LS, Moffett DB, Rosemond ZA, Wohlers DW. ATSDR evaluation of health effect of tungsten and relevance to public health. Toxicol Ind Health 2007;23(5-6): 347-387 

  38. Kim IS, Baek M, Choi SJ. Comparative cytotoxicity of $Al_{2}O_{3}$ , $CeO_{2}$ , $TiO_{2}$ and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 2010;10(5):3453-3458 

  39. Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. Comparative pulmonary toxicity study of nano- $TiO_{2}$ particles of different sizes and agglomerations in rats : different short- and long- term post-instillation results. Toxicology 2009;264:110-118 

  40. Krelying WG, Semmler M, Erbe F, Mayer P, Takenata S et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent by very low. J Tox Environ Health 2002;65:1513-1530 

  41. Kumar C.(Ed) Nanomaterials-Toxicity, Health and Environmental Issues, Nanotechnologies for the Life Sciences Volume 5. Weinheim, Baden-Wurttemberg, Germay: Wiley-VCH, 2008, pp. 86-87 

  42. Laulicht F, Cartularo L, Medict S, Peana MF, Zoroddu MA, Costa M. Investigating the potential carcinogenic effects of chronic tungsten(VI) oxide exposure to immortalize human lung cells. Soc Toxicol 2014;138(1):1297e 

  43. Leanderson P, Sahle W. Formation of hydroxyl radicals and toxicity of tungsten oxide fibers. Toxic in Vitro 1995;9(2):175-183 

  44. Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona silica nanoparticle uptake and impact on cells. ACS Nano 2012;6:5845-5857 

  45. Li XB, Zheng H, Zhang ZR, Li B, Huang ZY et al. Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomedicine: Nanotechnol Biol Med 2009;5:473-479 

  46. Li Y, Sun L, Jin M, Du Z, Liu X et al. Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicol in Vitro 2011;25:1343-1352 

  47. Liang M, Lin IC, Whittaker MR, Minchin RF, Monteiro MU, Toth I. Cellular uptake of densely packed polymer coatings on gold nanoparticles. ACS Nano 2010;4:403-413 

  48. Lin W, Huang YW, Zhou XD, Ma Y. In vitro toxicity of silica nanoparticle in human lung cancer cells. 2006;217:252-259 

  49. Liu H, Ma L, Liu J, Zhao J, Yan J, Hong F. Toxicity of nano-anatase $TiO_{2}$ to mice: Liver injury, oxidative stress. Toxicol Environ Chem 2009;92(1):175-186 

  50. Lu X, Jin T, Jin Y, Wu L, Hu B et al. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles- induced toxicity in mice. Nanotechnol 2013;24(1):015106 

  51. McCarthy J, Inkielewicz-Stepniak I, Corbalan JJ, Radomski MW. Mechanism of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin. Chem Res Toxicol 2012;25:2227-2235 

  52. Mu Q, Hondow NS, Krzeminski L, Brown AP, Jeuken LJC et al. Mechanism of cellular uptake of genotoxic silica nanoparticles. Particle Fibre Toxicol 2012;9(1):29 

  53. Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Katsuo K et al. Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application. Biomaterials 2011a;32:2713- 2724 

  54. Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Tochigi S et al. Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Particle Fibre Toxicol 2011b;8(1):1-10 

  55. Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 2009;5(7):846-853 

  56. Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol 2010;7(1):39 

  57. Nemmar A, Hoet PH, Nemery B. Translocation of ultrafine particles. Environ Health Perspect 2006;114(4):A211 

  58. Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K. Silica nanoparticles as hepatotoxicant. European J Pharmaceutics Biopharmaceutics 2009;72:496-501 

  59. Nordberg GF, Fowler BA, Nordberg M, Friberg LT. (third ed.). Handbook on the toxicology of metals. Academic Press. 2011 

  60. Oberdorster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994;102:173-179 

  61. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 2002;65:1531-1543 

  62. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J et al. Principles for characterizing the potential human effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005;2(1):8 

  63. OECD. 2001. Guideline for the Testing of Chemicals: Acute Oral Toxicity-Fixed Dose Procedure. Guideline 420. Organization for Economic Cooperation and Development: Paris 

  64. Oesterling E, Chopra N, Gavalas V, Arzuaga X, Lim EJ, Sultana R, Butterfield DA, Bachas L, Hennig B. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett 2008;178:160-166 

  65. Parks CG, Conrad K, Cooper GS. Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect 1999;107 (Suppl.5):793-802 

  66. Prabhakar PV, Reddy UA, Singh SP, Balasubramanyam A, Rahman MF et al. Oxidative stress induced by aluminum oxide nanomaterials after acute oral treatment in Wistar rats. J Appl Toxicol 2012;32:436-445 

  67. Rabolli V, Thomassen LCJ, Uwambayinema F, Martens JA, Lison D. The cytotoxicity activiry of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation. Toxicol Lett 2011;206:197-203 

  68. Radzium E, Dudkiewicz-Wilczynska J, Nowak K, Anuszewska E, Kunicki A. et al. Assessment of the cytotoxicity of aluminum oxide nanoparticles on selected mammalian cells. Toxicol In Vitro 2011;25:1694-1700 

  69. Rajiv S, Jerobin J, Saranya V, Nainawat M. Sharma A et al. Comparative cytotoxicity and genotoxicity of cobalt(II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol 2015;0960327105579208 

  70. Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A, Musarrat J. Titanium dioxide nanoparticles induced cytoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro 2012;26:351-361 

  71. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblsts and human lung epithelial cells. Toxicol Sci 2006;92(1): 174-185 

  72. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 2013;10(1): 15 

  73. Simon-Deckers A, Gouget B, Mayne-Lhermite M, Herlin-Boime N, Reynaud C, Carriere M.. In vitro investigation of oxide nanoparticles and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology, 2008;253:137-146 

  74. Singh S, Shi T, Duffin R, Albrecht C, van Berlo D et al. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine $TiO_{2}$ : role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 2007;222:141-151 

  75. Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A. $TiO_2$ nano particles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 2013;7(1):48-60 

  76. Skuland T, Ovrevik J, Lag M, Refsnes M. Role of size and surface area for pro-inflammatory response to silica nanoparticles in epithelial lung cells: importance of exposure conditions. Toxicol in Vitro 2014;28:146-155 

  77. Sun L, Li Y, Liu X, Jin M, Zhang L et al. Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol in Vitro 2011;25:1619-1629 

  78. Sycheva LP, Zhurkov VS, Iurchenko VV, Daugel-Dauge NO, Kovalenko MA et al. Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res 2011;726:8-14 

  79. Uboldi C, Giudetti G, Broggi F, Gilliland D, Ponti J, Rossi F. Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts. Mutation Research 2012;745:11-20 

  80. US Environmental Protection Agency (EPA), 2010. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. US EPA, Triangle Park, NC 

  81. Wang F, Gao F, Lan M, Yuan H, Huang Y et al. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol in Vitro 2009;23:808-815 

  82. Wang FS, Liu LF, Chen NM, Li YR. A study on cellular reactions and fibrogenic effects of mineral dusts. Biomed Environ Sci 1994;7(2):116-121 

  83. Wang J, Zhou G, Chen C, Yu H, Wang T et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 2007;168(1):176-185 

  84. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale $TiO_2$ rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 2006;91(1):227-236 

  85. Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine- $TiO_2$ particles: different responses related to surface properties. Toxicology 2007;230(1):90-104 

  86. Xue C, Wu J, Lan F, Liu W, Yang X et al. Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J Nanosci Nanotechnol 2010; 10(12):8500-8507 

  87. Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nature nanotechnol 2011;6(5):321-328 

  88. Yang H, Liu C, Yang D, Zhang H, Xi Zhuge. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 2009;29(1):69-78 

  89. Ye Y, Liu J, Chen M, Sun L, Lan M. In vitro toxicity of silica nanoparticles in myocardial cells. Environ Toxicol Pharmacol 2010a;29:131-137 

  90. Ye Y, Liu J, Xu J, Sun L, Chen M et al. Nano- $SiO_2$ induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepati ccell line. Toxicol in Vitro 2010b;24:751-758 

  91. Yu KO, Grabinski CM, Schrand AM, Murdock RC, Wang W, Gu B et al. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopartticle Research 2009;11(1):15-24 

  92. Zhang Y, Hu L, Yu D, Gao C. Influence of silica particle internalization on adhesion and migration of human dermal fibroblasts. Biomaterials 2010;31:8465-8474 

  93. Zhang XQ, Yin LH, Tang M, Pu YP. ZnO, $TiO_{2}$ , $SiO_{2}$ , and $Al_{2}O_{3}$ nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed Environ Sci 2011;24(6): 661-669 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로