$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

TNF 신호전달에서 RIPK와 MLKL의 기능적 생리적 특성
Functional and Physiological Characteristic of RIPK and MLKL in TNF Signaling 원문보기

생명과학회지 = Journal of life science, v.26 no.7 = no.195, 2016년, pp.868 - 874  

박영훈 (부산대학교 자연과학대학 분자생물학과) ,  정미숙 (부산대학교 자연과학대학 분자생물학과) ,  장세복 (부산대학교 자연과학대학 분자생물학과)

초록
AI-Helper 아이콘AI-Helper

수용체 상호작용 단백질 인산화 효소 RIPK1 (Receptor-interacting protein kinases 1)과 RIPK3은 고도로 보존된 인산화 효소 부위를 통하여 세린이나 트레오닌의 하이드록실기를 인산화하는 세린 또는 트레오닌-단백질 인산화 효소 군에 속한다. RIPK군은 염증이나 선천성 면역뿐 만 아니라 세포사멸이나 괴사와 같은 프로그램화된 세포사 멸을 중재하는데 중요한 역할을 담당한다. RIPK1과 다른 TNFR1 관련 단백질들의 상호작용은 TNF 수용체 1(TNFR1)에 사이토카인이 결합할 때 생존 촉진 전사인자 NF-κB의 활성을 조절하는 신호전달복합체 I을 조립하는 것으로 알려져 왔다. 뿐만 아니라, RIPK1과 RIPK3은 프로그램화된 세포괴사를 중재하는 RIP 동형 상호작용 모티브(RHIM)를 통하여 상호작용하고, 이러한 괴사는 세포사멸의 유형과는 다른 형태학적 특징을 가진 돌발적이고 제어되지 않는 세포사멸 유형으로 오랫동안 알려져 왔다. RIPK1과 RIPK3에 존재하는 RHIM의 고도로 보존된 서열들이 이들의 상호작용을 조절하며 이들은 necrosome이라 불리는 세포질 내 아밀로이드 복합체의 조립을 유도 한다. 또한 necrosome은 최근에 하위 신호전달을 조절하는 RIPK3의 기질로 확인된 혼합형 인산화 효소 도메인-유사 단백질(MLKL)을 포함한다. 본 리뷰는 TNF 신호전달에서 RIPK와 MLKL의 기능적, 생리적 특징들에 관한 개요를 제공한다.

Abstract AI-Helper 아이콘AI-Helper

Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are members of the serine or threonine protein kinase superfamily that phosphorylates the hydroxyl group of serine or threonine through the highly conserved kinase region. The RIPK family plays a crucial role not only in inflammation and innate...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Although many previous studies have focused on the mechanism of RIPK family members in inflammation and innate immunity, it is clear that these proteins have many functional and physiological characteristics that are derived from their crucial mechanism in programmed cell death signaling. These studies confirm that RIPKs and its related molecules play a pivotal role in the assembly of death complexes, which are identified by nuclear magnetic resonance and X-ray diffraction studies. Furthermore, many of the regulatory mechanisms of RIPK1 in apoptosis are mediated by biquitination of the kinase domain or combination through DD interaction.
본문요약 정보가 도움이 되었나요?

참고문헌 (52)

  1. Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X. and Akey, C. W. 2002. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423-432. 

  2. Berghe, T. V., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. and Vandenabeele, P. 2014. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135-147. 

  3. Bertrand, M. J., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J. and Barker, P. A. 2008. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689-700. 

  4. Brady, S. W., Zhang, J., Tsai, M. H. and Yu, D. 2015. PI3K-independent mTOR activation promotes lapatinib resistance and IAP expression that can be effectively reversed by mTOR and Hsp90 inhibition. Cancer Biol. Ther. 16, 402-411. 

  5. Brown, S., Heinisch, I., Ross, E., Shaw, K., Buckley, C. D. and Savill, J. 2002. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418, 200-203. 

  6. Cai, Z., Jitkaew, S., Zhao, J., Chiang, H. C., Choksi, S., Liu, J., Ward, Y., Wu, L. G. and Liu, Z. G. 2014. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55-65. 

  7. Chen, G. and Goeddel, D. V. 2002. TNF-R1 signaling: a beautiful pathway. Science 296, 1634-1635. 

  8. Chen, X., Li, W., Ren, J., Huang, D., He, W. T., Song, Y., Yang, C., Li, W., Zheng, X., Chen, P. and Han, J. 2014. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105-121. 

  9. Cho, Y., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M. and Chan, F. K. M. 2009. Phosphorylationdriven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123. 

  10. Chowdhury, D. and Lieberman, J. 2008. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26, 389. 

  11. Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A. and Yuan, J. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112-119. 

  12. Devin, A., Lin, Y. and Liu, Z. G. 2003. The role of the deathdomain kinase RIP in tumour-necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep. 4, 623-627. 

  13. Dickens, L. S., Boyd, R. S., Jukes-Jones, R., Hughes, M. A., Robinson, G. L., Fairall, L., Schwabe, J. W. R., Cain, K. and MacFarlane, M. 2012. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol. Cell 47, 291-305. 

  14. Draber, P., Kupka, S., Reichert, M., Draberova, H., Lafont, E., de Miguel, D., Spilgies, L., Surinova, S., Taraborrelli, L., Hartwig, T., Rieser, E., Martino, L., Rittinger, K. and Rieser, E. 2015. LUBAC-Recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep. 13, 2258-2272. 

  15. Dynek, J. N., Goncharov, T., Dueber, E. C., Fedorova, A. V., Izrael-Tomasevic, A., Phu, L., Helgason, E., Fairbrother, W. J., Deshayes, K., Kirkpatrick, D. S. and Vucic, D. 2010. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29, 4198-4209. 

  16. Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516. 

  17. Feig, C. and Peter, M. E. 2007. How apoptosis got the immune system in shape. Eur. J. Immunol. 37, S61-S70. 

  18. Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D. P., Langlais, C., Hupe, M., Cain, K., MacFarlane, M., Häcker, G. and Leverkus, M. 2011. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463 

  19. Gao, Z., Hwang, D., Bataille, F., Lefevre, M., York, D., Quon, M. J. and Ye, J. 2002. Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J. Biol. Chem. 277, 48115-48121. 

  20. Haas, T. L., Emmerich, C. H., Gerlach, B., Schmukle, A. C., Cordier, S. M., Rieser, E., Feltham, R., Vince, J., Warnken, U., Wenger, T., Koschny, R., Komander, D., Silke, J. and Walczak H. 2009. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831-844. 

  21. He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L. and Wang, X. 2009. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100-1111. 

  22. Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B. and Tschopp, J. 2000. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489-495. 

  23. Humphries, F., Yang, S., Wang, B. and Moynagh, P. N. 2015 RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ. 22, 225-236. 

  24. Hunter, I. and Nixon, G. F. 2006. Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J. Biol. Chem. 281, 34705-34715. 

  25. Kalai, M., Van Loo, G., Vanden Berghe, T., Meeus, A., Burm, W., Saelens, X. and Vandenabeele, P. 2002. Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ. 9, 981-994. 

  26. Li, J., McQuade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., Hsiao, Y. S., Damko, E., Moquin, D., Walz, T., McDermott, A., Chan, F. K. M. and Wu, H. 2012. The RIP1/ RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339-350. 

  27. Linkermann, A., Bräsen, J. H., Darding, M., Jin, M. K., Sanz, A. B., Heller, J., Zena, F. D., Weinlichf, R., Ortize, A., Walczakd, H., Weinbergg, J. M., Greenf, D., R., Kunzendorf, U. and Weinberg, J. M. 2013. Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proc. Natl. Acad. Sci. USA 110, 12024-12029. 

  28. Ma, Y., Temkin, V., Liu, H. and Pope, R. M. 2005. NF-κB Protects Macrophages from Lipopolysaccharide-induced cell death: the role of caspase 8 and receptor-interacting protein. J. Biol. Chem. 280, 41827-41834. 

  29. McDermott, M. F., Aksentijevich, I., Galon, J., McDermott, E. M., Ogunkolade, B. W., Centola, M., Elizabeth Mansfield2, Gadina, M., Karenko, L., Pettersson, T., McCarthy, J., Frucht, D. M., Aringer, M., Torosyan, Y., Teppo, A. M., Wilson, M., Karaarslan, H. M., Wan, Y., Todd, I., Wood, G., Schlimgen, R., Kumarajeewa, T. R., Cooper, S. M., Vella, J. P., Amos, C. I., Mulley, J., Quane, K. A. and McCarthy, J. 1999. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133-144. 

  30. Michallet, M. C., Meylan, E., Ermolaeva, M. A., Vazquez, J., Rebsamen, M., Curran, J., Poeck, H., Bscheider, M., Hartmann, G., König, M., Kalinke, U., Pasparakis, M. and Tschopp, J. 2008. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651-661. 

  31. Micheau, O. and Tschopp, J. 2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190. 

  32. Mocarski, E. S., Upton, J. W. and Kaiser, W. J. 2012. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat. Rev. Immunol. 12, 79-88. 

  33. Moquin, D. M., McQuade, T. and Chan, F. K. M. 2013. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PloS One 8, e76841. 

  34. Opferman, J. T. and Korsmeyer, S. J. 2003. Apoptosis in the development and maintenance of the immune system. Nat. Immunol. 4, 410-415. 

  35. Park, Y. H., Jeong, M. S. and Jang, S. B. 2014. Death domain complex of the TNFR-1, TRADD, and RIP1 proteins for death-inducing signaling. Biochem. Biophys. Res. Commun. 443, 1155-1161. 

  36. Park, Y. H., Jeong, M. S. and Jang, S. B. 2016. Structural insights of homotypic interaction domains in the TNF ligand-receptor signal transduction. BMB Rep. 49, 159-166. 

  37. Park, Y. H., Jeong, M. S., Park, H. H. and Jang, S. B. 2013. Formation of the death domain complex between FADD and RIP1 proteins in vitro. BBA-Proteins Proteom. 1834, 292-300. 

  38. Rebsamen, M., Heinz, L. X., Meylan, E., Michallet, M. C., Schroder, K., Hofmann, K., Vazquez, J., Benedict, C. A. and Tschopp, J. 2009. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep. 10, 916-922. 

  39. Schleich, K., Warnken, U., Fricker, N., Öztürk, S., Richter, P., Kammerer, K., Schnölzer, M., Krammer, P. H. and Lavrik, I. N. 2012. Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol. Cell 47, 306-319. 

  40. Schneider-Brachert, W., Tchikov, V., Neumeyer, J., Jakob, M., Winoto-Morbach, S., Held-Feindt, J., Heinrich, M., Merkel, O., Ehrenschwender, M., Adam, D., Mentlein, R., Kabelitz, D. and Schütze, S. 2004. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21, 415-428. 

  41. Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W. and Lei, X. 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227. 

  42. Tenev, T., Bianchi, K., Darding, M., Broemer, M., Langlais, C., Wallberg, F., Zachariou, A., Lopez, J., MacFarlane, M., Cain, K. and Meier, P. 2011. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432-448. 

  43. Trichonas, G., Murakami, Y., Thanos, A., Morizane, Y., Kayama, M., Debouck, C. M., Hisatomi, T., Miller, J. M. and Vavvas, D. G. 2010. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proceedings of the Proc. Natl. Acad. Sci. USA 107, 21695-21700. 

  44. Vercammen, D., Brouckaert, G., Denecker, G., Van de Craen, M., Declercq, W., Fiers, W. and Vandenabeele, P. 1998. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 188, 919-930. 

  45. Vercammen, D., Vandenabeele, P., Beyaert, R., Declercq, W. and Fiers, W. 1997. Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 9, 801-808. 

  46. Verhelst, K., Carpentier, I., Kreike, M., Meloni, L., Verstrepen, L., Kensche, T., Dikic, I. and Beyaert, R. 2012. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31, 3845-3855. 

  47. Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L. F., Wang, F. S. and Wang, X. 2014. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133-146. 

  48. Wang, L., Du, F. and Wang, X. 2008. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693-703. 

  49. Willingham, S. B., Bergstralh, D. T., O′Connor, W., Morrison, A. C., Taxman, D. J., Duncan, J. A., Barnoy, S., Venkatesan, M. M., Flavell, R. A., Deshmukh, M., Hoffman, H. M. and Ting, J. P. Y. 2007. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2, 147-159. 

  50. Wu, Z. H., Wong, E. T., Shi, Y., Niu, J., Chen, Z., Miyamoto, S. and Tergaonkar, V. 2010 ATM-and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol. Cell 40, 75-86. 

  51. Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q. and Han, J. 2009. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336. 

  52. Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J. and Liu, Z. G. 2012. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl. Acad. Sci. USA 109, 5322-5327. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로