$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

건설기계의 에너지 효율 제고를 위한 비-하이브리드 신기술에 관한 리뷰
A Review on New Non-hybrid Technologies to Improve Energy Efficiency of Construction Machineries 원문보기

드라이브ㆍ컨트롤 = Journal of drive and control, v.13 no.3, 2016년, pp.53 - 66  

조중선 (Department of Control & Instrumentation Engineering, Changwon National University)

Abstract AI-Helper 아이콘AI-Helper

New non-hybrid approaches to improve energy efficiency of construction machineries are reviewed in this paper. Hydraulic systems are classified into four classes according to Backe's classification and commercially promising new technologies are carefully chosen in each class. IMV, 3-Line CPR, Close...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
IMV기술의 핵심원리는? IMV기술의 핵심원리는 각 밸브의 독립적 제어에 의해 불필요한 쓰로틀손실을 최소화시키는 것과 에너지 재생과 회수를 극대화시키는 것이다. 그림2 (a) 구성의 목적은 미터-인 및 미터-아웃 오리피스를 독립적으로 제어하여 쓰로틀손실을 최소화하는 것이다.
유압시스템만의 장점은 무엇인가? 유압시스템의 고유하고 독보적인 장점은 높은 압력밀도(Power density)이다. 이는 주로 실린더의 존재에 기인하며, 유압시스템 산업계는 상대적으로 낮은 에너지 효율에도 불구하고 틈새시장(niche market)에서 독점적인 영역을 구축하고 있다.
스풀형식의 방향제어 밸브의 에너지 효율 측면에서 단점은? 반면에 에너지 효율 측면에는 근본적인 단점이 있다. 첫 째로, 전 영역의 동작을 위해 설계된 스풀밸브의 특성에 의해 미터-인과 미터-아웃 오리피스에서의 불필요한 쓰로틀손실(Throttling Loss)을 피할 수 없다. 둘째로, 액츄에이터의 4-Q동작(4-Quadrant Operation)에서 활용 가능한 위치 및 운동에너지의 재생(Regeneration)5)과 회 수(Recuperation)5)가 어려운 구조이다. 최근의 비-하이브리드 방식의 연구는 쓰로틀손실 절감과 활용 가능한 에너지의 효과적 재활용을 통한 에너지 효율의 제고에 초점이 맞춰져 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (64)

  1. M. Kagoshima, T. Nanjo and A. Tsutsui, "Development of New Hybrid Excavator", Kobelco Technology Review, No. 27, 2007, (available from http://www.kobelco.co.jp/english/ktr/pdf/ktr_27/039-042.pdf) 

  2. www.kyotoprotocol.com/ 

  3. Eaton, "Eaton Medium Duty Piston Pumps: Load Sensing Systems Principle of Operation", No. 03-206, November 1992 

  4. C. Williamson, J. Zimmerman and M. Ivantysynova, "Efficiency Study of an Excavator Hydraulic System Based on Displace-Controlled Actuators", ASME/Bath Workshop on Fluid Power and Motion Control (FPMC08), Bath, UK, 2008 

  5. B. Eriksson, "Control Strategy for Energy Efficient Fluid Power Actuators: Utilizing Individual Metering", M.Sc. Thesis, Linkopings University, pp. 19-20, 2007 

  6. W. Backe, "Hydraulic Drives with High Efficiency", Fluid power systems and technology, Vol. 2, pp. 45-73, 1995 

  7. M. Murrenhoff, S. Sgro and M. Vukovic, "An Overview of Energy Saving Architectures for Mobile Applications: A framework to classify mobile hydraulic systems", Proc. of the 9th Int. Fluid Power Conf., Aachen, Germany, 2014. 

  8. K. Tabor, "A Novel Method of Controlling a Hydraulic Actuator with Four Valve Independent Metering Using Load Feedback", SAE International Commercial Vehicle Engineering Congress and Exhibition, 2005 

  9. A. Jansson and J. Palmberg, "Seperate Controls of Meter-in and Meter-out Orifices in Mobile Hydraulic Systems", SAE International Off-highway and Powerplant Congress and Exposition, 1990 

  10. R. Book and C. Goering, "Programmable Electrohydraulic Valve", SAE International Off-highway and Powerplant Congress and Exposition, 1999 

  11. J. Aardema, "Hydraulic Circuit Having Dual Electrohydraulic Control Valves", U. S. Patent 5,568,759, 1996 

  12. C. DeBoer and B. Yao, "Velocity Control of Hydraulic Cylinders with Only Pressure Feedback", Proc. of IMECE'01, 2001 ASME Int. Mechanical Engineering Congress and Exposition, pp. 1-9, Nov. 11-16, 2001, N.Y., USA 

  13. B. Eriksson, "Mobile Fluid Power Systems Design: with a Focus on Energy Efficiency", Ph.D. Thesis, Linkopings University, 2010 

  14. Parker Hannifin AB, "Fluid Valve Arrangement", US Patent No. US 2011/0017310 A1, Jan. 27, 2011 

  15. Parker Hannifin Co., "Fluid Valve Arrangement", US Patent No. US 2013/0074955 A1, Mar. 28, 2013 

  16. Parker Hannifin Co., "Independent Metering Valve for Mobile Equipment", International Patent No. WO 2015/164321 A1, Oct. 29, 2015 

  17. K. Tabor, "Optimal Velocity Control and Cavitation Prevention of a Hydraulic Actuator Using Four Valve Independent Metering", SAE International Commercial Vehicle Engineering Congress and Exhibition, 2005 

  18. J. Pfaff, "Distributed Electro-Hydraulic Systems for Telehandlers", The 50th National Conf. on Fluid Power, March 16-18, pp. 779-784, 2005 

  19. S. Liu and B. Yao, "Coordinate Control of Energy Saving Programmable Valves", IEEE Trans. on Control Systems Technology, Vol. 16, No. 1, pp. 34-45, 2008 

  20. Eaton, "Ultronics ZTS16 Twin Spool Valve", Technical Sheet, 2010 

  21. B. Andersson, "On thr Valvistor - A Proportionally Controlled Seat Valve", Ph.D. Thesis No. 108, Division of Fluid Power Control, Linkopings University, 1984 

  22. B. Eriksson, J. Larsson and J. Palmberg, "A Novel Valve Concept Including the Valvistor Poppet Valve", HIDRAVLICNA KRMILJA, Ventil 14, pp. 438-442, 2008 

  23. P. Opdenbosch, "Auto-calibration and Control Applied to Electro-hydraulic Valves", Ph.D. Thesis, Georgia Institute of Technology, 2007 

  24. HUSCO International, "INCOVA" brochure, 2007 (Available at http://www.incova.com/) 

  25. M. Linjama, K. Koskinen and M. Vilenius, "Accurate Trajectory Tracking Control of Water Hydraulic Cylinder with Non-ideal ON/OFF Valves", Int. J. of Fluid Power 4, No. 1, pp. 7-16, 2003 

  26. M. Linjama et al., "Mechatronic Design of Digital Hydraulic Micro Valve Package", ELSEVIER Procedia Engineering 106, pp. 97-107, 2015 

  27. P. Dengler, J. Groh and M. Geimer, "Valve Control Concepts in a Constant Pressure System with an Intermediate Pressure Line", 21st Int. Conf. on Hydraulics and Pneumatics, June 1-3, 2011 

  28. P. Dengler et al., "Efficiency Improvement of a Constant Pressure System Using an Intermediate Pressure Line", 8th Int. Fluid Power Conf., Dresden, Germany, March 26-28, 2012 

  29. P. Dengler and R. Dombrowski, "Efficient Optimization of Hydrostatic System Using an Intermediate Line", 7th FPNI PhD Symposium on Fluid Power, Reggio Emilia, Italy, June 27-30, 2012 

  30. A. Hewett, "Hydraulic Circuit Flow Control", U.S. Patent No. 5,329,767, 1994 

  31. M. Ivantysynova, "Displacement Controlled Linear and Rotary Drives for Mobile Machines with Automatic Motion Control", SAE International Off-Highway & Powerplant Congress & Exposition, Milwaukee, Wisconsin, Sept. 11-13, 2000 

  32. R. Rahmfeld, "Development and Control of Energy Saving Hydraulic Servo Drives for Mobile Systems", Ph.D. Thesis, Technical University of Hamburg-Harburg, 2002 

  33. J. Zimmerman, E. Busquets and M. Ivantysynova, "40% Fuel Savings by Displacement Control Leads to Lower Working Temperatures - A Simulation Study and Measurements", Proceedings of the 52nd National Conf. on Fluid Power, Las Vegas, USA, March 2011 

  34. C. Williamson, "Power Management for Multi-Actuator Mobile Machines with Displacement Controlled Hydraulic Actuators", Ph.D. Thesis, Purdue University, 2010 

  35. R. Hippalgaonkar and M. Ivantysynova, "Optimal Power Management of Hydraulic Hybrid Mobile Machines Part I: Theoretical Studies, Modeling and Simulation", J. of Dynamic Systems, Measurement, and Control, Vol. 138, 2016 

  36. R. Hippalgaonkar and M. Ivantysynova, "Optimal Power Management of Hydraulic Hybrid Mobile Machines Part 2: Machine Implementation and Measurement", J. of Dynamic Systems, Measurement, and Control, Vol. 138, 2016 

  37. E. Busquets and M. Ivantysynova, "Toward Supervisory-Level Control for the Energy Consumption and Performance Optimization of Displacement-Controlled Hydraulic Hybrid Machines", Proceedings of 10th IFK Int. Conf. on Fluid Power, Dresden, Germany, March 2016 

  38. http://www.innas.com/ 

  39. P. Achten, Z. Fu and G. Vael, "Transforming Future Hydraulics: A New Design of a Hydraulic Transformer", The 5th Scandinavian Int. Conf. on Fluid Power, SICFP. Vol. 97, 1997 

  40. P. Achten et al., "Dedicated Design of the Hydraulic Transformer", 3rd Int. Fluid Power Conf., Aachen, Germany, March 2002 

  41. P. Achten, "A Hydraulic Transformer with a Swash Block Control Around Three Axis of Rotation", Key Note Speech, 8th IFK, Dresden, Germany, March 28, 2012 (available at http://www.innas.com/) 

  42. P. Achten et al., "A Four-Quadrant Hydraulic Transformer for Hybrid Vehicles", 11th Scandinavian Int. Conf. on Fluid Power, SICFP'09, June 2-4, 2009, Linkopings, Sweden 

  43. E. Bishop, "Digital Hydraulic System", U.S. Patent No. 7,475,538 B2, 2009 

  44. E. Bishop, "Digital Hydraulic System", U.S. Patent No. cB2, 2012 

  45. D. Gier and G. Gerardus, "Hydraulic Cylinder for Use in a Hydraulic Tool", European Patent No. EP 1 580 437 A1, 2005 

  46. M. Linjama et al., "Secondary Controlled Multi-Chamber Hydraulic Cylinder", 11th Scandinavian Int. Conf. on Fluid Power, SICFP'09, Linkopings, Sweden, June 2-4, 2009 

  47. http://www.norrhydro.com/ 

  48. A. Sipola, J. Makitalo and J. Hautamaki, "The Product Called NORRDIGITM", 5th Workshop on Digital Fluid Power, Tampere, Finland, Oct. 24-25, 2012 

  49. A. Amico et al., "Investigation of a Digital Hydraulic Actuation System on an Excavator Arm", 13th Scandinavian Int. Conf. on Fluid Power, SICFP2013, Linkopings, Sweden, June 3-5, 2013 

  50. K. Heybroek and E. Norlin, "Hydraulic Multi-Chamber Cylinders in Construction Machinery", In Hydraulikdagarna, Linkopings, Sweden, March 16-17, 2015 

  51. S. Salter, "Improved Fluid-working Machine", European Patent No. 0 494 236 B1, 1990 

  52. S. Salter and W. Rampen, "The Wedding Cake Multi-eccentric Radial Piston Hydraulic Machine with Direct Computer Control of Displacement", Proc. of the 10th Conference on Fluid Power, pp. 47-64, 1993 

  53. Md. Ehsan, W. Rampen and S. Salter, "Computer Simulation of the Performance of Digital- Displacement Pump-Motors", FPST-Vol. 3, Fluid Power Systems and Technology: Collected Papers ASME, pp. 19-24, 1996 

  54. Md. Ehsan, W. Rampen and S. Salter, "Modeling of Digital-Displacement Pump- Motors and Their Application as Hydraulic Drives for Nonuniform Loads", Transactions of the ASME, Vol. 122, pp. 210-215, 2000 

  55. C. Yigen, "Control of a Digital Displacement Pump", M.Sc. Thesis, Aalborg University, 2012 

  56. K. Merrill, M. Holland and J. Lumkes, "Efficiency Analysis of a Digital Pump/Motor as Compared to a Valve Plate Design", 7th Int. Fluid Power Conference, 22-24 March 2010, Aachen, Germany, pp. 313-324, 2010 

  57. K. Merrill and J. Lumkes, "Operating Strategies and Valve Requirements for Digital Pump/Motors", Proc. of 6th FPNI-PhD Symp. West Lafayette 2010, pp. 249-258, 2010 

  58. http://www.artemisip.com/ 

  59. Personal communication with Dr. Rampen of Artemis Intelligent Power Co. Ltd. 

  60. Artemis Co. Ltd., "Technical Sheet: E-dyn 96 Industrial Pump", 2015 (available from http://www.artemisip.com/sites/default/files/docs/Industrial%20pump%20leaflet%202015-04-03.pdf) 

  61. http://www.artemisip.com/applications/off-road 

  62. P. Achten, "Designing the Impossible Pump", Proc. Hydraulikdagar, Linkopings, Sweden, 2003 

  63. P. Achten et al., "Design and Testing of an Axial Piston Pump Based on the Floating Cup Principle", 8th Scandinavian Int. Conf. on Fluid Power, SICFP'03, Tampere, Finland, May 7-9, 2003 

  64. P. Achten, "Convicted to Innovation in Fluid Power", Proc. IMechE Vol. 224 Part I: J. Systems and Control Engineering, pp. 619-621, 2010 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로