$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Genomic Analysis of the Extremely Halophilic Archaeon Halobacterium noricense CBA1132 Isolated from Solar Salt That Is an Essential Material for Fermented Foods 원문보기

Journal of microbiology and biotechnology, v.26 no.8, 2016년, pp.1375 - 1382  

Lim, Seul Ki (Microbiology and Functionality Research Group, World Institute of Kimchi) ,  Kim, Joon Yong (Biological Disaster Analysis Group, Korea Basic Science Institute) ,  Song, Hye Seon (Biological Disaster Analysis Group, Korea Basic Science Institute) ,  Kwon, Min-Sung (Microbiology and Functionality Research Group, World Institute of Kimchi) ,  Lee, Jieun (Microbiology and Functionality Research Group, World Institute of Kimchi) ,  Oh, Young Jun (Microbiology and Functionality Research Group, World Institute of Kimchi) ,  Nam, Young-Do (Research Group of Gut Microbiome, Korea Food Research Institute) ,  Seo, Myung-Ji (Division of Bioengineering, Incheon National University) ,  Lee, Dong-Gi (Biological Disaster Analysis Group, Korea Basic Science Institute) ,  Choi, Jong-Soon (Biological Disaster Analysis Group, Korea Basic Science Institute) ,  Yoon, Changmann (Biological Disaster Analysis Group, Korea Basic Science Institute) ,  Sohn, Eunju (Biological Disaster Analysis Group, Korea Basic Science Institute) ,  Rahman, MD. Arif-Ur (Biological Disaster Analysis Group, Korea Basic Science Institute) ,  Roh, Seong Woon (Biological Disaster Analysis Group, Korea Basic Science Institute) ,  Choi, Hak-Jong (Microbiology and Functionality R)

Abstract AI-Helper 아이콘AI-Helper

The extremely halophilic archaeon Halobacterium noricense is a member of the genus Halobacterium. Strain CBA1132 (= KCCM 43183, JCM 31150) was isolated from solar salt. The genome of strain CBA1132 assembled with 4 contigs, including three rRNA genes, 44 tRNA genes, and 3,208 open reading frames. St...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • For phylogenetic analysis, three phylogenetic trees were constructed based on the 16S rRNA gene, five housekeeping genes for multilocus sequence typing (MLST), and average nucleotide identity (ANI). The 16S rRNA gene sequence of strain CBA1132 was extracted from the genome sequences using the RNAmmer 1.
  • Genomic DNA was extracted using a QuickGene DNA tissue kit S (Kurabo) and purified using an MG Genomic DNA purification kit (Doctor Protein) according to the manufacturers’ instructions. Genomic DNA of strain CBA1132 was sequenced using next-generation sequencing technology (PacBio RS II system; Pacific Biosciences) according to the manufacturer’s instructions and was assembled using PacBio SMRT Analysis 2.3.0 (Pacific Biosciences). The genome sequence of stain CBA1132 was deposited in the DDBJ under the accession numbers BCMZ01000001–BCMZ01000004.

대상 데이터

  • The cell morphology of CBA1132 and examination for contamination by other microorganisms were detected using a light microscope (ECLIPSE 80i; Nikon). The strain has been deposited at the Korean Culture Center of Microorganisms (KCCM) and Japan Collection of Microorganisms (JCM) under accession number KCCM 43183 and JCM 31150, respectively.

이론/모형

  • Phylogenetic relationships between strain CBA1132 and its most closely representative species were determined using the MEGA6 software [44]. Phylogenetic consensus trees were constructed using the neighbor-joining (NJ) [38], maximum-parsimony (MP) [20], and maximum-likelihood (ML) [13] methods with 1,000 randomly selected bootstrap replicates. The phylogenetic tree based on ANI values was constructed using CLgenomics ver.
  • Five different housekeeping genes were used to generate the MLST phylogenetic tree: V-type ATP synthase subunit B (atpB), elongation factor 2 (EF-2), DNA repair and recombination protein RadA (radA), DNA-directed RNA polymerase subunit beta (rpoB´), and protein translocase subunit SecY (secY). The 16S rRNA gene sequences and concatenated amino acid sequences inferred from the five genes for MLST were aligned with those of the most closely related species, respectively, using the multiple alignment program ClustalW [45]. Phylogenetic relationships between strain CBA1132 and its most closely representative species were determined using the MEGA6 software [44].
본문요약 정보가 도움이 되었나요?

참고문헌 (50)

  1. Abriouel H, Benomar N, Lucas R, Galvez A. 2011. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Alorena green table olives. Int. J. Food Microbiol. 144: 487-496. 

  2. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75. 

  3. Bonete MJ, Martinez-Espinosa RM, Pire C, Zafrilla B, Richardson DJ. 2008. Nitrogen metabolism in haloarchaea. Saline Systems 4: 9. 

  4. Cabello P, Roldan MD, Moreno-Vivian C. 2004. Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150: 3527-3546. 

  5. Cha IT, Yim KJ, Song HS, Lee HW, Hyun DW, Kim KN, et al. 2014. Halolamina rubra sp. nov., a haloarchaeon isolated from non-purified solar salt. Antonie Van Leeuwenhoek 105: 907-914. 

  6. Cha IT, Yim KJ, Song HS, Lee HW, Hyun DW, Kim KN, et al. 2014. Halobellus rufus sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie Van Leeuwenhoek 105: 925-932. 

  7. Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, et al. 2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126: 159-166. 

  8. Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, et al. 2009. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc. Natl. Acad. Sci. USA 106: 15442-15447. 

  9. Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14: 1394-1403. 

  10. DasSarma S, DasSarma P. 2012. Halophiles. Encyclopedia of Life Sciences. JohnWiley & Sons, NJ. DOI: 10.1002/9780470015902.a0000394.pub3. 

  11. Echigo A, Minegishi H, Shimane Y, Kamekura M, Itoh T, Usami R. 2013. Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. Int. J. Syst. Evol. Microbiol. 63: 3556-3562. 

  12. Elazari-Volcani B. 1957. Genus XII. Halobacterium Elazari-Volcani, 1940, pp. 207-212. In Breed RS, Murray EGD, Smith NR (eds.). Bergey's Manual of Determinative Bacteriology, 7th Ed. The Williams and Wilkins Co. 

  13. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. 

  14. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. 2008. The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 26: 541-547. 

  15. Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35: W52-W57. 

  16. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse HJ, Stan-Lotter H. 2004. Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8: 431-439. 

  17. Han D, Cui HL. 2014. Halobacterium rubrum sp. nov., isolated from a marine solar saltern. Arch. Microbiol. 196: 847-851. 

  18. Hough DW, Danson MJ. 1999. Extremozymes. Curr. Opin. Chem. Biol. 3: 39-46. 

  19. Kim KK, Lee KC, Lee JS. 2011. Halogranum salarium sp. nov., a halophilic archaeon isolated from sea salt. Syst. Appl. Microbiol. 34: 576-580. 

  20. Kluge AG, Farris JS. 1969. Quantitative phyletics and the evolution of anurans. Syst. Biol. 18: 1-32. 

  21. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35: 3100-3108. 

  22. Lee HS. 2013. Diversity of halophilic archaea in fermented foods and human intestines and their application. J. Microbiol. Biotechnol. 23: 1645-1653. 

  23. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964. 

  24. Mancinelli RL, Landheim R, Sanchez-Porro C, Dornmayr-Pfaffenhuemer M, Gruber C, Legat A, et al. 2009. Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. Int. J. Syst. Evol. Microbiol. 59: 1908-1913. 

  25. McGenity TJ, Grant WD. 1995. Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst. Appl. Microbiol. 18: 237-243. 

  26. Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R. 2010. Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int. J. Syst. Evol. Microbiol. 60: 2513-2516. 

  27. Minegishi H, Echigo A, Shimane Y, Kamekura M, Tanasupawat S, Visessanguan W, Usami R. 2012. Halobacterium piscisalsi Yachai, et al. 2008 is a later heterotypic synonym of Halobacterium salinarum Elazari-Volcani 1957. Int. J. Syst. Evol. Microbiol. 62: 2160-2162. 

  28. Minegishi H, Yamauchi Y, Echigo A, Shimane Y, Kamekura M, Itoh T, et al. 2013. Halarchaeum nitratireducens sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int. J. Syst. Evol. Microbiol. 63: 4202-4206. 

  29. Moon JS, Choi HS, Shin SY, Noh SJ, Jeon CO, Han NS. 2015. Genome sequence analysis of potential probiotic strain Leuconostoc lactis EFEL005 isolated from kimchi. J. Microbiol. 53: 337-342. 

  30. Nagaoka S, Minegishi H, Echigo A, Shimane Y, Kamekura M, Usami R. 2011. Halostagnicola alkaliphila sp. nov., an alkaliphilic haloarchaeon from commercial rock salt. Int. J. Syst. Evol. Microbiol. 61: 1149-1152. 

  31. Parte AC. 2014. LPSN - list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42: D613-D616. 

  32. Roh SW, Bae JW. 2009. Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood. J. Microbiol. 47: 162-166. 

  33. Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW. 2010. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J. 4: 1-16. 

  34. Roh SW, Lee ML, Bae JW. 2010. Haladaptatus cibarius sp. nov., an extremely halophilic archaeon from seafood, and emended description of the genus Haladaptatus. Int. J. Syst. Evol. Microbiol. 60: 1187-1190. 

  35. Roh SW, Nam YD, Chang HW, Kim KH, Sung Y, Kim MS, et al. 2009. Haloterrigena jeotgali sp. nov., an extremely halophilic archaeon from salt-fermented food. Int. J. Syst. Evol. Microbiol. 59: 2359-2363. 

  36. Roh SW, Nam YD, Chang HW, Sung Y, Kim KH, Lee HJ, et al. 2007. Natronococcus jeotgali sp. nov., a halophilic archaeon isolated from shrimp jeotgal, a traditional fermented seafood from Korea. Int. J. Syst. Evol. Microbiol. 57: 2129-2131. 

  37. Roh SW, Nam YD, Chang HW, Sung Y, Kim KH, Oh HM, Bae JW. 2007. Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 57: 2296-2298. 

  38. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. 

  39. Shimane Y, Hatada Y, Minegishi H, Echigo A, Nagaoka S, Miyazaki M, et al. 2011. Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt. Int. J. Syst. Evol. Microbiol. 61: 2266-2270. 

  40. Shimane Y, Nagaoka S, Minegishi H, Kamekura M, Echigo A, Hatada Y, et al. 2013. Natronoarchaeum philippinense sp. nov., a haloarchaeon isolated from commercial solar salt. Int. J. Syst. Evol. Microbiol. 63: 920-924. 

  41. Shimoshige H, Yamada T, Minegishi H, Echigo A, Shimane Y, Kamekura M, et al. 2013. Halobaculum magnesiiphilum sp. nov., a magnesium-dependent haloarchaeon isolated from commercial salt. Int. J. Syst. Evol. Microbiol. 63: 861-866. 

  42. Song HS, Cha IT, Yim KJ, Lee HW, Hyun DW, Lee SJ, et al. 2014. Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie Van Leeuwenhoek 105: 979-986. 

  43. Srivastava P, Kowshik M. 2013. Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea 2013: 732864. 

  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. 

  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. 

  46. Ventosa A, Oren A. 1996. Halobacterium salinarum nom. corrig., a name to replace Halobacterium salinarium (Elazari-Volcani) and to include Halobacterium halobium and Halobacterium cutirubrum. Int. J. Syst. Bacteriol 46: 347. 

  47. Wang QF, Li W, Yang H, Liu YL, Cao HH, Dornmayr-Pfaffenhuemer M, et al. 2007. Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample. Int. J. Syst. Evol. Microbiol. 57: 600-604. 

  48. Yamauchi Y, Minegishi H, Echigo A, Shimane Y, Kamekura M, Itoh T, et al. 2013. Halarchaeum rubridurum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt samples. Int. J. Syst. Evol. Microbiol. 63: 3143-3147. 

  49. Yamauchi Y, Minegishi H, Echigo A, Shimane Y, Shimoshige H, Kamekura M, et al. 2013. Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int. J. Syst. Evol. Microbiol. 63: 1138-1142. 

  50. Yang Y, Cui HL, Zhou PJ, Liu SJ. 2006. Halobacterium jilantaiense sp. nov., a halophilic archaeon isolated from a saline lake in Inner Mongolia, China. Int. J. Syst. Evol. Microbiol. 56: 2353-2355. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로