$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암모니아 용출에 의한 산화대 금 광석으로부터 Fe 제거 효율에 관한 연구
The Efficiency of Fe Removal Rate from Gold Ore in the Oxidation Zone by Ammonia Leaching 원문보기

韓國鑛物學會誌 = Journal of the Mineralogical Society of Korea, v.29 no.3, 2016년, pp.113 - 122  

김봉주 (조선대학교 에너지.자원공학과) ,  조강희 (서울대학교 지역시스템공학과) ,  최낙철 (서울대학교 지역시스템공학과) ,  박천영 (조선대학교 에너지.자원공학과)

초록
AI-Helper 아이콘AI-Helper

산화대 금 광석에 존재하는 적철석을 암모니아 용액을 이용하여 제거하여 금과 은의 회수율을 향상시키고자 하였다. 산화대에는 석영, 적철석, 백운모가 존재하고 있으며, 적철석은 수성기원으로 형성되었다. 다양한 변수에 대하여 암모니아 용출실험을 수행한 결과, Fe 최대 용출 인자는 $-45{\mu}m$ 입도 크기, 1.0 M의 황산 농도, 5.0 g/l의 황산암모늄 농도 그리고 2.0 M의 과산화수소 농도일 때였다. 이 암모니아 용출용액으로부터 침철석이 침전-형성되는 것을 확인하였으며, 고체-잔류물에서 Fe-제거량이 증가할수록 Au와 Ag 회수율이 증가하였다.

Abstract AI-Helper 아이콘AI-Helper

This study aims to improve the recovery of gold and silver by removing hematite from gold ore of an oxidation zone with ammonia solution. Quartz, hematite and muscovite were present in the oxidation zone, while hematite was hydrogenous. As a result of performing an ammonia leaching test on variables...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구 목적은 gold-bearing 산화대의 적철석을 암모니아 용액을 이용하여 최대 제거 인자를 결정하고자 하였으며, 이때 용출용액으로부터 침전되는 철수산화물에 대하여 광물학적으로 해석하고자 하였다. 또한 고체-잔류물에서, Fe-제거에 따른 금과 은의 품위 향상을 고찰하고자 하였다.
  • 따라서 본 연구 목적은 gold-bearing 산화대의 적철석을 암모니아 용액을 이용하여 최대 제거 인자를 결정하고자 하였으며, 이때 용출용액으로부터 침전되는 철수산화물에 대하여 광물학적으로 해석하고자 하였다. 또한 고체-잔류물에서, Fe-제거에 따른 금과 은의 품위 향상을 고찰하고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
암모니아가 유용금속 용출의 용매제로 사용하는 가장 큰 이유는 무엇인가? 암모니아가 이와 같이 유용금속 용출의 용매제로 사용하는 이유는 비용이 저렴하고, 효율이 매우 뛰어나며, 낮은 독성과 부식성, 그리고 용해성의 금속 복합물을 형성하는 능력이 뛰어나기 때문이다. 그리고 무엇보다 암모니아는 Fe를 용출시켜 침철석이나 적철석으로 침전시키는 능력이 뛰어나기 때문이다 (Beckstead and Miller, 1977; Ghosh et al., 1990, 2002, 2003).
산화대가 Fe 함량 및 금의 품위 또한 부화대나 광화대에 비하여 상대적으로 높게 나타나는 이유는 무엇인가? 산화대는 산성수에 의하여 용해성 금속과 황이 용탈되어 제거되기 때문에 금속 함량은 낮은 반면에 철수산화물의 형성으로 인하여 Fe 함량 및 금의 품위 또한 부화대나 광화대에 비하여 상대적으로 높게 나타난다(De oliveira and De oliveira, 2000; Hartley and Rice, 2005; Atapour and Atiabi, 2007; Belogub et al., 2008; Velasco et al.
산화대에 존재하는 gold가 부유선별이 어려운 이유는 무엇인가? , 2013). 그러나 산화대에 존재하는 gold는 철수산화물로 피복되어 있기 때문에 부유선별이 어렵다. 그러므로 황화광물과 맥석광물을 부유선별 하는 과정에서, 산화대 광석, 즉 철수산화물이 많은 광석이 부유선별에 공급되기 때문에 황화광물의 부선효율이 떨어진다.
질의응답 정보가 도움이 되었나요?

참고문헌 (29)

  1. Anand, S., Das, S.C., Das, R.P., and Jena, P.K. (1988) Leaching of manganese nodule in ammonical medium using ferrous sulfate as the reductant. Metallurgical Transactions B, 19B, 331-334. 

  2. Atapour, H. and Atiabi, A. (2007) The geochemistry of gossan associated with Sarcheshmeh porphyry copper deposit. Kerman, Iran: implications for exploration and the environment, Journal of Geochemical Exploration, 93, 47-65. 

  3. Beckstead, L.W. and Miller, J.D. (1977) Ammonia, oxidation leaching of chalcopyrite-reaction kinetics. Metallurgical Transactions B, 8B, 19-29. 

  4. Belogub, E,V., Novoselov, K.A., Yakovleva, V.A., and Spiro, B. (2008) Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the south Urals. Ore Geology Reviews, 33, 239-254. 

  5. Browen, B.B., Benison, K.C., Oboh-Ikuenobe, F.E., Story, S., and Mormile, M.R. (2008) Active hematite concretion formation in morden acid saline lake sediments, Lake Brown, western Australia. Earth and Planetary Science Letters, 268, 52-63. 

  6. Clarke, P., Fornasiero, D., Ralston, J., and Smart, R.St. C. (1995) A study of the removal of oxidation products from sulfide mineral surface. Minerals Engineering, 8, 1347-1357. 

  7. Das, R.P. and Anand, S. (1995) Precipitation of iron oxides from ammonia-ammonium sulphate solutions. Hydrometallurgy, 38, 161-173. 

  8. De oliveira, S.M.B., and De oliveira, N.M. (2000) The morphology of gold grains associated with oxidation of sulphide-bearing quartz veins at Sao Bartolomeu, central Brazil. South American Earth Sciencs, 13, 217-224. 

  9. Ghosh, M.K., Anana, S., and Das, R.P. (1990) Oxidative ammonia leaching of pure zinc sulfide in the presence of lead compounds. Metallurgical Transactions B, 21B, 402-404. 

  10. Ghosh, M.K., Das, R.P., and Biswas, A.K. (2002) Oxidative ammonia leaching of sphalerite part I: noncatalytic kinetics. International Journal of Mineral Processing, 66, 241-254. 

  11. Ghosh, M.K., Das, R.P., and Biswas, A.K. (2003) Oxidative ammonia leaching of sphalerite part II: Cu(II)-catalyzed kinetics. International Journal of Mineral Processing, 70, 221-234. 

  12. Harris, D.C. (1990) The mineralogy of gold and its relevance to gold recoveries. Mineral Deposita, 25, S3-S7. 

  13. Henley, K.J., Clarke, N.C., and Sauter, P. (2001) Evaluation of a diagnostic leaching technique for gold in native gold and gold $\pm$ silver tellurides. Minerals Engineering, 14, 1-12. 

  14. Lawrance, L.M. and Griffin, B.J. (1994) Crystal features of supergene gold at hannan south, western Australia. Mineralium Deposita, 29, 391-398. 

  15. Madden, A.S., Hamilton, V.E., Elwood Madden, M.E., Larson, P.R., and Miller, M.A. (2010) Low-temperature mechanism for formation of coarse crystalline hematite through nanoparticle aggregation. Earth and Planetary Science letters, 298, 377-384. 

  16. Morris, R.V., Ming, D.W., Graff, T.G., Arvidson, R.E., Bell III, J.F., Squyres, S.W., Mertzman, S.A., Gruener, J.E., Golden, D.C. Le, L., and Robinson, G.A. (2005) Hematite spherules in basaltic tephra altered under aqueous, aic-sulfate conditions on Mauna kea volcano, Hawaii,: possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 168-178. 

  17. Niinae, M., Komatsu, N., Nakahiro, Y., Wakamatsu, T., and Shibata, J. (1996) Preferential leaching of cobalt, nickel and copper from cobalt-rich ferromanganese crusts with ammonical solutions using ammonium thiosulfate and ammonium sulfite as reducing agents. Hydrometallurgy, 40, 111-121. 

  18. Park, K.H., Mohapatra, D., Reddy, B.R., and Nam, C.W. (2007) A study the oxidative ammonia/ammonium sulphate leaching of a complex(Cu-Ni-Co-Fe) matte. Hydrometallurgy, 86, 164-171. 

  19. Peng, Y., Grano, S., Ralston, J., and Fornasiero, D. (2002) Towards prediction of oxidation during grinding I. galena flotation. Minerals Engineering, 15, 493-498. 

  20. Peng, Y., Grabo, S., Fornasiero, D., and Ralston, J. (2003) Control of grinding conditions in the flotation of galena and its separation from pyrite. International Journal of Mineral Processing, 70, 67-82. 

  21. Pracejus, B. (2008) The ore minerals under microscope, an optical guide. Elsevier, 875p. 

  22. Rao, K.S., Das, R.P., Mukunda, P.G., and Ray, H.S. (1993) Use of X-ray diffraction in a study of ammonia leaching of multimetal studies. Metallurgical Transactions B, 24B, 937-945. 

  23. Sabba, N. and Akretche, D.E. (2006) Selective leaching of a copper ore by an electromembrane process using ammonia solutions. Mineral Engineering, 19, 123-129. 

  24. Veglio, F., Trifoni, M., Pagnanelli, F., and Toro, L. (2001) Shrinking core model with variable activation energy: a kinetic model of manganiferous ore leaching with sulphuric acid and lactose. Hydrometallurgy, 60, 167-179. 

  25. Velasco, F., Herrero, J.M., Suarez, S., Yusta, I., Alvaro, A., and Tornos, F. (2013) Supergene features and evolution of gossan capping massive sulphide deposits in the Iberian pyrite belt. Ore Geology Reviews, 53, 181-203. 

  26. Webster, J.G. and Mann, A.W. (1984) The influence of climate, geomorphology and primary geology on the supergene migration of gold and silver. Journal of geochimical Exploration, 22, 21-42. 

  27. Wei, X., Viadero, Jr, R.C., and Buzby, K.M. (2005) Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environmental Engineering Science, 22, 745-755. 

  28. Wilson, A.F. (1984) Origin of quartz-free gold nuggests and supergene gold found in laterites and soils-a review and some new observations. Australian Journal of Earth Sciences, 31, 303-316. 

  29. Yang, S., Blum, N., Rahders, E., and Zhang, Z. (1998) The nature of invisible gold in sulfide from the Xiangxi Au-Sb-W ore deposit in Northwestern Hunan, People's Republic of China. The Canadian Mineralogist, 36, 1361-1372. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로