$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air 원문보기

Mycobiology, v.44 no.3, 2016년, pp.162 - 170  

Lee, Samantha (Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey) ,  Hung, Richard (Department of Biology, Kean University) ,  Yin, Guohua (Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey) ,  Klich, Maren A. (Southern Regional Research Laboratory) ,  Grimm, Casey (Southern Regional Research Laboratory) ,  Bennett, Joan W. (Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey)

Abstract AI-Helper 아이콘AI-Helper

In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In this paper, we demonstrate Arabidopsis’ ability to respond to VOCs emitted by common indoor mold, (Aspergillus versicolor) and demonstrate the potential of this plant for use as a bioindicator to monitor toxigenic mold VOCs in indoor air.
  • The usage of plants as bioindicators and as part of ecological risk assessment of various pollutants has a long history[25, 26]. The purpose of our study was to determine if Arabidopsis thaliana was sensitive enough to detect subtle differences in the volatile production of two Aspergillus strains and to understand the volatile specific responses of the fungal VOCs. Our results demonstrate that Arabidopsis thaliana has the potential to be used a bioindicator to assess potentially toxigenic fungal VOCs in indoor air.
  • Volatile detection has been used as an indirect marker to indicate the presence of Aspergillus species and other molds in indoor environments of stored agricultural crops [4]. To our knowledge, this report is the first to show that VOCs from A. versicolor can have an impact on plant growth and seed germination. We also demonstrate that there is a potential for developing plants to monitor indoor air quality.

가설 설정

  • Different isolates and strains of a given species often produce different volatile profiles. We hypothesized that Arabidopsis is sensitive to the differences in fungal volatile production, leading to distinct plant responses. Our study had three goals.
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. 1 Morath SU Hung R Bennett JW Fungal volatile organic compounds: a review with emphasis on their biotechnological potential Fungal Biol Rev 2012 26 73 83 

  2. 2 Bitas V Kim HS Bennett JW Kang S Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health Mol Plant Microbe Interact 2013 26 835 843 23581824 

  3. 3 Korpi A Järnberg J Pasanen AL Microbial volatile organic compounds Crit Rev Toxicol 2009 39 139 193 19204852 

  4. 4 Heddergott C Calvo AM Latgé JP The volatome of Aspergillus fumigatus Eukaryot Cell 2014 13 1014 1025 24906414 

  5. 5 Bennett JW Hung R Lee S Padhi S Fungal and bacterial volatile organic compounds: an overview and their role as ecological signaling agents Hock B The Mycota IX Fungal Interactions Berlin Springer-Verlag 2013 373 393 

  6. 6 WHO Regional Office for Europe Guidelines for indoor air quality: dampness and mold Rheinbach Druckpartner Moser 2009 

  7. 7 Institute of Medicine Damp indoor spaces and health Washington, DC National Academies 2004 

  8. 8 Polizzi V Adams A Picco AM Adriaens E Lenoir J Van Peteghem C De Saeger S De Kimpe N Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome Build Environ 2011 46 945 954 

  9. 9 Markert BA Breure AM Zechmeister HG Trace metals and other contaminants in the environment. Vol. 6. Bioindicators and biomonitors: principles, concepts and applications Amsterdam Elsevier 2003 

  10. 10 Augusto S Máguas C Matos J Pereira MJ Branquinho C Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air, and pine needles Environ Pollut 2010 158 483 489 19782448 

  11. 11 Hasselbach L Ver Hoef JM Ford J Neitlich P Crecelius E Berryman S Wolk B Bohle T Spatial patterns of cadmium and lead deposition on and adjacent to National Park Service lands in the vicinity of Red Dog Mine, Alaska Sci Total Environ 2005 348 211 230 16162326 

  12. 12 Rainio J Niemelä J Ground beetles (Coleoptera: Carabidae) as bioindicators Biodivers Conserv 2003 12 487 506 

  13. 13 Miller SW Wooster D Li J Resistance and resilience of macroinvertebrates to irrigation water withdrawals Freshw Biol 2007 52 2494 2510 

  14. 14 Gregson S Clifton S Roberts RD Plants as bioindicators of natural and anthropogenically derived contamination Appl Biochem Biotechnol 1994 48 15 22 

  15. 15 Lee S Hung R Schink A Mauro J Bennett JW Arabidopsis thaliana for testing the phytotoxicity of volatile organic compounds Plant Growth Regul 2014 74 177 186 

  16. 16 Börjesson T Stöllman U Adamek P Kaspersson A Analysis of volatile compounds for detection of molds in stored cereals Cereal Chem 1989 66 300 304 

  17. 17 Chambers ST Syhre M Murdoch DR McCartin F Epton MJ Detection of 2-pentylfuran in the breath of patients with Aspergillus fumigatus Med Mycol 2009 47 468 476 19301177 

  18. 18 Wessen B Strom G Palmgren U Schoeps KO Nilsson M Analysis of microbial volatile organic compounds Flannigan B Samson RA Miller JD Microorganisms in home and indoor work environments London Taylor & Francis 2001 267 274 

  19. 19 Pasanen P Korpi A Kalliokoski P Pasanen AL Growth and volatile metabolite production of Aspergillus versicolor in house dust Environ Int 1997 23 425 432 

  20. 20 Gao P Korley F Martin J Chen BT Determination of unique microbial volatile organic compounds produced by five Aspergillus species commonly found in problem buildings AIHA J (Fairfax, Va) 2002 63 135 140 

  21. 21 McNeal KS Herbert BE Volatile organic metabolites as indicators of soil microbial activity and community composition shifts Soil Sci Soc Am J 2009 73 579 588 

  22. 22 Mølhave L Volatile organic compounds and the sick building syndrome Lippmann M Environmental toxicants: human exposures and their health effects 3rd ed New York Wiley-Interscience 2009 241 256 

  23. 23 Lee S Hung R Yap M Bennett JW Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth Arch Microbiol 2015 197 723 727 25771960 

  24. 24 Boyes DC Zayed AM Ascenzi R McCaskill AJ Hoffman NE Davis KR Görlach J Growth stage-based phenotypic analysis of Arabidopsis : a model for high throughput functional genomics in plants Plant Cell 2001 13 1499 1510 11449047 

  25. 25 Juhrén M Nobel W Went FW The standardization of Poa annua as an indicator of smog concentrations. I. Effects of temperature, photoperiod, and light intensity during growth of the test-plants Plant Physiol 1957 32 576 586 16655051 

  26. 26 Thomas MD Gas damage to plants Annu Rev Plant Physiol 1951 2 293 322 

  27. 27 Misyura M Colasanti J Rothstein SJ Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions J Exp Bot 2012 64 229 240 23162120 

  28. 28 Kottb M Gigolashvili T Großkinsky DK Piechulla B Trichoderma volatiles effecting Arabidopsis : from inhibition to protection against phytopathogenic fungi Front Microbiol 2015 6 995 26483761 

  29. 29 Junker RR Tholl D Volatile organic compound mediated interactions at the plant-microbe interface J Chem Ecol 2013 39 810 825 23881446 

  30. 30 Heller J Tudzynski P Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease Annu Rev Phytopathol 2011 49 369 390 21568704 

  31. 31 Ryu CM Farag MA Hu CH Reddy MS Wei HX Paré PW Kloepper JW Bacterial volatiles promote growth in Arabidopsis Proc Natl Acad Sci U S A 2003 100 4927 4932 12684534 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로