$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Cloning and Characterization of Ginsenoside-Hydrolyzing β-Glucosidase from Lactobacillus brevis That Transforms Ginsenosides Rb1 and F2 into Ginsenoside Rd and Compound K 원문보기

Journal of microbiology and biotechnology, v.26 no.10, 2016년, pp.1661 - 1667  

Zhong, Fei-Liang (Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University) ,  Ma, Rui (Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University) ,  Jiang, Mingliang (Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University) ,  Dong, Wei-Wei (Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University) ,  Jiang, Jun (Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University) ,  Wu, Songquan (Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, and Department) ,  Li, Donghao ,  Quan, Lin-Hu

Abstract AI-Helper 아이콘AI-Helper

The ginsenoside-hydrolyzing β-glucosidase gene (bgy2) was cloned from Lactobacillus brevis. We expressed this gene in Escherichia coli BL21(DE3), isolated the resulting protein, and then utilized the enzyme for the biotransformation of ginsenosides. The bgy2 gene contains 2,223 bp, and encodes a pro...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

성능/효과

  • In conclusion, Bgy2 is a member of the GH 3 family from L. brevis.
  • MBP-Bgy2 was purified by MBP-bound amylose resin, and then the supernatant from the cell lysates and the purified enzyme were analyzed by SDS-PAGE. The molecular mass of the MBP-Bgy2 predicted from the amino acid sequence was 123 kDa, which was the mass observed by SDS-PAGE(Fig. 1).
  • Therefore, Bgy2 exhibits substrate specificity for ginsenosides Rb1 and F2 with glucose moieties at the C-20 and C-3 positions, and illustrates specific affinity to the outer C-20 glucose and C-3 glucose. The transformation pathway illustrated in Fig.
  • 3D). When compared with the reference standard ginsenoside Rd, metabolite 1 had an equal retention time and ESI-MS/MS fragmentation patterns (Figs. 3A and 3C).
본문요약 정보가 도움이 되었나요?

참고문헌 (21)

  1. An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, et al . 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76: 5827-5836. 

  2. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. 2002. Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull. 25: 743-747. 

  3. Bae EA, Han MJ, Kim EJ, Kim DH. 2004. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch. Pharm. Res. 27: 61-67. 

  4. Chae S, Kang KA, Chang WY, Kim MJ, Lee SJ, Lee YS, et al. 2009. Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. J. Agric. Food Chem. 57: 5777-5782. 

  5. Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC. 2007. Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J. Microbiol. Biotechnol. 17: 1937-1943. 

  6. Kim JK, Cui CH, Liu Q, Yoon MH, Kim SC, Im WT. 2013. Mass production of the ginsenoside Rg3(S) through the combinative use of two glycoside hydrolases. Food Chem. 141: 1369-1377. 

  7. Kim MK, Lee JW, Lee KY, Yang DC. 2005. Microbial conversion of major ginsenoside Rb(1) to pharmaceutically active minor ginsenoside Rd. J. Microbiol. 43: 456-462. 

  8. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, et al. 2000. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63: 1702-1704. 

  9. Lee SJ, Kim Y, Kim MG. 2015. Changes in the ginsenoside content during the fermentation process using microbial strains. J. Ginseng Res. 39: 392-397. 

  10. Lin F, Guo X, Lu W. 2015. Efficient biotransformation of ginsenoside Rb1 to Rd by isolated Aspergillus versicolor , excreting β-glucosidase in the spore production phase of solid culture. Antonie Van Leeuwenhoek 108: 1117-1127. 

  11. Ni HX, Yu NJ, Yang XH. 2010. The study of ginsenoside on PPARgamma expression of mononuclear macrophage in type 2 diabetes. Mol. Biol. Rep. 37: 2975-2979. 

  12. Park CS, Yoo MH, Noh KH, Oh DK. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87: 9-19. 

  13. Quan LH, Kim YJ, Li GH, Choi KT, Yang DC. 2013. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius . World J. Microbiol. Biotechnol. 29: 1001-1007. 

  14. Quan LH, Liang Z, Kim HB, Kim SH, Kim SY, Noh YD, Yang DC. 2008. Conversion of ginsenoside Rd to compound K by crude enzymes extracted from Lactobacillus brevis LH8. J. Ginseng Res. 32: 226-231. 

  15. Quan LH, Min JW, Yang DU, Kim YJ, Yang DC. 2012. Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum . Appl. Microbiol. Biotechnol. 94: 377-384. 

  16. Quan LH, Piao JY, Min JW, Yang DU, Lee HN, Yang DC. 2011. Bioconversion of ginsenoside Rb1 into compound K by Leuconostoc citreum LH1 isolated from kimchi. Braz. J. Microbiol. 42: 1227-1237. 

  17. Quan LH, Wang C, Jin Y, Wang TR, Kim YJ, Yang DC. 2013. Isolation and characterization of novel ginsenosidehydrolyzing glycosidase from Microbacterium esteraromaticum that transforms ginsenoside Rb2 to rare ginsenoside 20(S)-Rg3. Antonie Van Leeuwenhoek 104: 129-137. 

  18. Wu JY, Gardner BH, Murphy CI, Seals JR, Kensil CR, Recchia J. 1992. Saponin adjuvant enhancement of antigenspecific immune responses to an experimental HIV-1 vaccine. J. Immunol. 148: 1519-1525. 

  19. Xie J, Zhao D, Zhao L, Pei J, Xiao W, Ding G, et al. 2016. Characterization of a novel arabinose-tolerant α-Larabinofuranosidase with high ginsenoside Rc to ginsenoside Rd bioconversion productivity. J. Appl. Microbiol. 120: 647-660. 

  20. Xu QF, Fang XL, Chen DF. 2003. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J. Ethnopharmacol. 84: 187-192. 

  21. Yoshikawa M, Morikawa T, Kashima Y, Ninomiya K, Matsuda H. 2003. Structures of new dammarane-type triterpene saponins from the flower buds of Panax notoginseng and hepatoprotective effects of principal ginseng saponins. J. Nat. Prod. 66: 922-927. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로