$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Fabrication of Stretchable Transparent Electrodes 원문보기

Applied science and convergence technology, v.26 no.6, 2017년, pp.149 - 156  

Oh, Jong Sik (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ,  Yeom, Geun Young (School of Advanced Materials Science and Engineering, Sungkyunkwan University)

Abstract AI-Helper 아이콘AI-Helper

Recently, stretchable and transparent electrodes have received great attention owing to their potential for realizing wearable electronics. Unlike the traditional transparent electrodes represented by indium tin oxide (ITO), stretchable and transparent electrodes are able to maintain their electrica...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In this context, we wish to focus our discussion on the principal fabrication methods and current issues of next generation stretchable transparent electrode materials. Beyond the use of conventional ITO, in the past several years many research groups have increasingly explored the viability of stretchable transparent electrodes such as silver nanowires (AgNWs), nanostructured networks, conductive polymers, carbon-based electrodes, and nanotrough networks, which in some cases exhibited outstanding flexibility, electrical and optical properties.

가설 설정

  • Conductivities of PEDOT:PSS films with various concentrations of EMIM TCB. (b) Normalized resistances ofPEDOT:PSS films with various concentrations of EMIM TCB when PDMS substrates were stretched from 0% to 180%. (c) Optical microscope images of PEDOT:PSS films with and without 1.
  • (b) Relative difference in resistance as a function of radius of curvature. (c) Relative resistance changes of the nanotrough or the hybrid as a function of strain. Reprinted with permission from [43,44], J.
본문요약 정보가 도움이 되었나요?

참고문헌 (49)

  1. Y. Huang, L. Gao, Y. N. Zhao, X. H. Guo, C. X. Liu, and P. Liu, Highly flexible fabric strain sensor based on graphene nanoplatelet-polyaniline nanocomposites for human gesture recognition. J Appl Polym Sci 2017, 134(39). 

  2. B. G. Zhuo, S. J. Chen, M. M. Zhao, and X. J. Guo, High Sensitivity Flexible Capacitive Pressure Sensor Using Polydimethylsiloxane Elastomer Dielectric Layer Micro-Structured by 3-D Printed Mold. Ieee J Electron Devi 2017, 5(3), 219-223. 

  3. Y. C. Zhao and X. Huang, Mechanisms and Materials of Flexible and Stretchable Skin Sensors. Micromachines-Basel 2017, 8(3). 

  4. X. Q. Zhang, X. X. Huang, L. Xia, B. Zhong, X. D. Zhang, T. Zhang, and G. W. Wen, Facile synthesis of flexible and free-standing cotton covered by graphene/MoO2 for lithium-ions batteries. Ceram Int 2017, 43(6), 4753-4760. 

  5. P. Zhang, H. Z. Zhang, C. Yan, Z. J. Zheng, and Y. Yu, Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors. Mater Res Express 2017, 4(7). 

  6. X. G. Yu, Y. Q. Li, W. B. Zhu, P. Huang, T. T. Wang, N. Hu, and S. Y. Fu, A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection. Nanoscale 2017, 9(20), 6680-6685. 

  7. B. You, Y. Kim, B. K. Ju, and J. W. Kim, Highly Stretchable and Waterproof Electroluminescence Device Based on Superstable Stretchable Transparent Electrode. Acs Appl Mater Inter 2017, 9(6), 5486-5494. 

  8. K. Kim, J. Kim, B. G. Hyun, S. Ji, S. Y. Kim, S. Kim, B. W. An, and J. U. Park, Stretchable and transparent electrodes based on inplane structures. Nanoscale 2015, 7(35), 14577-14594. 

  9. K. Kim, B. G. Hyun, J. Jang, E. Cho, Y. G. Park, and J. U. Park, Nanomaterial-based stretchable and transparent electrodes. J Inf Disp 2016, 17(4), 131-141. 

  10. S. Jang, W. B. Jung, C. Kim, P. Won, S. G. Lee, K. M. Cho, M. L. Jin, C. J. An, H. J. Jeon, S. H. Ko, T. S. Kim, and H. T. Jung, A three-dimensional metal grid mesh as a practical alternative to ITO. Nanoscale 2016, 8(29), 14257-14263. 

  11. T. Bocksrocker, N. Hulsmann, C. Eschenbaum, A. Pargner, S. Hofle, F. Maier-Flaig, and U. Lemmer, Highly efficient fully flexible indium tin oxide free organic light emitting diodes fabricated directly on barrier-foil. Thin Solid Films 2013, 542, 306-309. 

  12. J. S. Oh, J. S. Oh, J. H. Shin, G. Y. Yeom, and K. N. Kim, Nano-Welding of Ag Nanowires Using Rapid Thermal Annealing for Transparent Conductive Films. J Nanosci Nanotechno 2015, 15(11), 8647-8651. 

  13. H. T. Zhai, R. R. Wang, X. Wang, Y. Cheng, L. J. Shi, and J. Sun, Transparent heaters based on highly stable Cu nanowire films. Nano Res 2016, 9 (12), 3924-3936. 

  14. X. M. Xu, S. He, C. H. Zhou, X. D. Xia, L. Xu, H. Chen, B. C. Yang, and J. L. Yang, Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks. Rsc Adv 2016, 6(107), 105895-105902. 

  15. M. X. Song, X. He, C. Z. Zhang, M. D. Chen, C. J. Huang, F. H. Chen, and H. Qiu, Solvothermal fabrication of thin Ag nanowires assisted with AAO. Rsc Adv 2016, 6 (85), 82238-82243. 

  16. S. Pirsalami, S. M. Zebarjad, and H. Daneshmanesh, An Overview of Metallic Nanowire Networks, Promising Building Blocks for Next Generation Transparent Conductors: Emergence, Fundamentals and Challenges. J Electron Mater 2017, 46(8), 4707-4715. 

  17. J. T. Jiu and K. Suganuma, Metallic Nanowires and Their Application. Ieee T Comp Pack Man 2016, 6(12), 1733-1751. 

  18. Y. Kim, S. Jun, B. K. Ju, and J. W. Kim, Heterogeneous Configuration of a Ag Nanowire/Polymer Composite Structure for Selectively Stretchable Transparent Electrodes. Acs Appl Mater Inter 2017, 9(8), 7505-7514. 

  19. D. H. Kim, K. C. Yu, Y. Kim, and J. W. Kim, Highly Stretchable and Mechanically Stable Transparent Electrode Based on Composite of Silver Nanowires and Polyurethane-Urea. Acs Appl Mater Inter 2015, 7(28), 15214-15222. 

  20. T. Y. Choi, B. U. Hwang, B. Y. Kim, T. Q. Trung, Y. H. Nam, D. N. Kim, K. Eom, and N. E. Lee, Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes. Acs Appl Mater Inter 2017, 9(21), 18022-18030. 

  21. H. S. Liu, B. C. Pan, and G. S. Liou, Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 2017, 9(7), 2633-2639. 

  22. C. Hwang, J. An, B. D. Choi, K. Kim, S. W. Jung, K. J. Baeg, M. G. Kim, K. M. Ok, and J. Hong, Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode. J Mater Chem C 2016, 4(7), 1441-1447. 

  23. G. Heo, K. H. Pyo, D. H. Lee, Y. Kim, and J. W. Kim, Critical Role of Diels-Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer. Sci Rep-Uk 2016, 6. 

  24. C. F. Guo, Y. Chen, L. Tang, F. Wang, and Z. F. Ren, Enhancing the Scratch Resistance by Introducing Chemical Bonding in Highly Stretchable and Transparent Electrodes. Nano Letters 2016, 16(1), 594-600. 

  25. T. Araki, R. Mandamparambil, D. M. P. van Bragt, J. Jiu, H. Koga, J. van den Brand, T. Sekitani, den J. M. J. Toonder, and K. Suganuma, Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques. Nanotechnology 2016, 27(45). 

  26. J. B. Pyo, B. S. Kim, H. Park, T. A. Kim, C. M. Koo, J. Lee, J. G. Son, S. S. Lee, and J. H. Park, Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes. Nanoscale 2015, 7(39), 16434-16441. 

  27. C. F. Guo, T. Y. Sun, Q. H. Liu, Z. G. Suo, and Z. F. Ren, Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun 2014, 5. 

  28. T. Cheng, Y. Z. Zhang, W. Y. Lai, Y. Chen, W. J. Zeng, and W. Huang, High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free method. J Mater Chem C 2014, 2(48), 10369-10376. 

  29. W. L. Hu, X. F. Niu, L. Li, S. R. Yun, Z. B. Yu, amd Q. B. Pei, Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology 2012, 23(34). 

  30. H. Yabu, K. Nagamine, J. Kamei, Y. Saito, T. Okabe, T. Shimazaki, and M. Nishizawa, Stretchable, transparent and molecular permeable honeycomb electrodes and their hydrogel hybrids prepared by the breath figure method and sputtering of metals. Rsc Adv 2015, 5(107), 88414-88418. 

  31. H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes. Chem Mater 2013, 25 (17), 3535-3538. 

  32. M. Y. Teo, N. Kim, S. Kee, B. S. Kim, G. Kim, S. Hong, S. Jung, and K. Lee, Highly Stretchable and Highly Conductive PEDOT:PSS/Ionic Liquid Composite Transparent Electrodes for Solution-Processed Stretchable Electronics. Acs Appl Mater Inter 2017, 9(1), 819-826. 

  33. J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanicallyrobust organic solar cells. Sol Energ Mat Sol C 2013, 110, 98-106. 

  34. R. J. Li, K. Parvez, F. Hinkel, X. L. Feng, and K. Mullen, va Bioinspired Wafer-Scale Production of Highly Stretchable Carbon Films for Transparent Conductive Electrodes. Angew Chem Int Edit 2013, 52(21), 5535-5538. 

  35. M. Vosgueritchian, D. J. Lipomi, and Z. A. Bao, Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Adv Funct Mater 2012, 22(2), 421-428. 

  36. Y. G. Seol, T. Q. Trung, O. J. Yoon, I. Y. Sohn, and N. E. Lee, Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J Mater Chem 2012, 22(45), 23759-23766. 

  37. Q. X. Fan, Q. Zhang, W. B. Zhou, F. Yang, N. Zhang, S. Q. Xiao, X. G. Gu, Z. J. Xiao, H. L. Chen, Y. C. Wang, H. P. Liu, and W. Y. Zhou, Highly conductive and transparent carbon nanotube-based electrodes for ultrathin and stretchable organic solar cells. Chinese Phys B 2017, 26(2). 

  38. J. H. Liu, Y. H. Yi, Y. H. Zhou, and H. F. Cai, Highly Stretchable and Flexible Graphene/ITO Hybrid Transparent Electrode. Nanoscale Res Lett 2016, 11. 

  39. J. Y. Hong, W. Kim, D. Cho, J. Kong, and H. S. Park, Omnidirectionally Stretchable and Transparent Graphene Electrodes. Acs Nano 2016, 10(10), 9446-9455. 

  40. S. Ahn, A. Choe, J. Park, H. Kim, J. G. Son, S. S. Lee, M. Park, and H. Ko, Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. J Mater Chem C 2015, 3(10), 2319-2325. 

  41. S. Won, Y. Hwangbo, S. K. Lee, K. S. Kim, K. S. Kim, S. M. Lee, H. J. Lee, J. H. Ahn, J. H. Kim, and S. B. Lee, Double-layer CVD graphene as stretchable transparent electrodes. Nanoscale 2014, 6(11), 6057-6064. 

  42. T. Chen, Y. H. Xue, A. K. Roy, and L. M. Dai, Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes. Acs Nano 2014, 8(1), 1039-1046. 

  43. B. W. An, B. G. Hyun, S. Y. Kim, M. Kim, M. S. Lee, K. Lee, J. B. Koo, H. Y. Chu, B. S. Bae, and J. U. Park, Stretchable and Transparent Electrodes using Hybrid Structures of Graphene-Metal Nanotrough Networks with High Performances and Ultimate Uniformity. Nano Letters 2014, 14(11), 6322-6328. 

  44. M. S. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, H. K. Kim, D. G. Kim, D. Y. Lee, S. Nam, and J. U. Park, High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures. Nano Letters 2013, 13(6), 2814-2821. 

  45. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306(5696), 666-669. 

  46. A. K. Geim and K. S. Novoselov, The rise of graphene. Nature materials 2007, 6(3), 183-191. 

  47. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8(3), 902-907. 

  48. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 2008, 3(9), 538-542. 

  49. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors. Nano letters 2008, 8(10), 3498-3502. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로