$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법
New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect 원문보기

공업화학 = Applied chemistry for engineering, v.28 no.6, 2017년, pp.705 - 713  

응웬 딩 궁 디엔 (한서대학교 신소재공학과) ,  조광연 (한국세라믹기술원) ,  오원춘 (한서대학교 신소재공학과)

초록
AI-Helper 아이콘AI-Helper

독창적 물질인 $Bi_2WO_6-GO-TiO_2$ 나노복합체를 쉬운 수열법에 의해 성공적으로 합성하였다. 수열반응을 하는 동안, 그래핀 시트 위에 $Bi_2WO_6$$TiO_2$를 도포하였다. 합성한 $Bi_2WO_6-GO-TiO_2$ 복합체형 광촉매는 X-선 회절법(XRD), 주사전자현미경(SEM), 에너지 분산 X-선(EDX) 분석, 투과전자현미경(TEM), 라만분광법, UV-Vis 확산반사 분광법(UV-vis-DRS), 및 X-선 광전자분광기(XPS)에 의하여 특성화하였다. $Bi_2WO_6$ 나노입자는 불규칙한 dark-square block 나노 플페이트 형상을 보였으며, 이산화티탄 나노입자는 퀜텀 도트 사이즈로 그래핀 시트 위 표면을 덮고 있었다. 로다민 비의 분해는 농도감소의 측정과 함께 UV 분광법에 의하여 관찰하였다. 합성된 물질의 광촉매 반응은 Langmuir-Hinshelwood 모델과 띠 이론으로 설명하였다.

Abstract AI-Helper 아이콘AI-Helper

A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The XPS analysis was performed using a VG Scientific ESCALAB250 XPS system equipped with a monochromated Al K α X-ray source (hv = 1486.6 eV) with charge compensation.
  • The experiments were carried out at 100 mL of 5.0 × 10-5 mol/L dye concentration, 0.05 g nanocomposite, and neutral pH.
  • The objective of the study is to elucidate the easy preparation of a Bi2WO6-GO-TiO2 composite using a one-step hydrothermal method. In this process, Bi salt and Na2WO4 were dissolved in distilled water, and the obtained solution was stirred at a medium temperature after mixing with graphene oxide and a TiO2 precursor.

대상 데이터

  • Graphene oxide was prepared in the laboratory from natural graphite using the Hummer-Offeman’s method and used in the formation of composites. Titanium (IV) oxide (TiO2, nano power, 99.7%) used as a titanium source was purchased from Sigma-Aldrich Co. (USA). Ethanol (95%), and sodium hydroxide (NaOH, 93.

이론/모형

  • 4. Conclusion

    Considering the different aspects of the above results, we successfully synthesized Bi2WO6-GO-TiO2 nanocomposite by hydrothermal method. With the simultaneous existence of anatase and rutile phases, the TiO2 nanoparticles indicate the possible enhancement of the ability of the photocatalytic activity of the Bi2WO6-GO-TiO2 composite From SEM and TEM images, we suggested that both the Bi2WO6 and TiO2 nanostructures were successfully loaded onto the transparent graphene sheets.

  • Graphene oxide was prepared in the laboratory from natural graphite using the Hummer-Offeman’s method and used in the formation of composites.
  • Photocatalytic reactions with different photocatalysts were presented by the Langmuir-Hinshelwood model[25]. The photocatalytic degradation of RhB containing different photocatalysts obeys the pseudo-first-order kinetics with respect to the concentration of RhB.
  • 5406 Å). Scanning electron microscopy (SEM) was conducted using a UV-vis spectrophotometer (Neosys-2000) with BaSO4 as a reference at room temperature which was converted from reflection to absorbance using the Kubelka-Munk method. Transmission electron microscopy (TEM) was also used to examine the size and distribution of the titanium and iron particles deposited on the fullerene surface of various samples.
  • The shape and structure of the nanomaterial surface with high resolution are analyzed using the SEM method. The results of SEM analysis of the Bi2WO6-GO-TiO2 composite in Figure 2 indicated that the graphene surface was covered with a mixture of Bi2WO6 and TiO2 nanoparticles.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. C. Hu, T. Lu, and F. Chen, A brief review of graphene-metal oxide composites synthesis and applications in photocatalysis, J. Chin. Adv. Mater. Soc., 1, 21-39 (2013). 

  2. L. Zhu, Z. D. Meng, M. L. Chen, F. J. Zhang, J. G. Choi, J. Y. Park, and W. C. Oh, Photodegradation of MB solution by the metal (Fe, Ni and Co) containing AC/ $TiO_2$ photocatalyst under the UV irradiation, J. Photo. Sci., 1, 69 (2010). 

  3. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4, 380-386 (2010). 

  4. S. R. Kim, M. K. Parvez, and M. Chhowalla, UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells, Chem. Phys. Lett., 483, 124-127 (2009). 

  5. W. Low and V. Boonamnuayvitaya, Enhancing the photocatalytic activity of $TiO_2$ co-doping of graphene- $Fe^{3+}$ ions for formaldehyde removal, J. Environ. Manage., 127, 142-149 (2013). 

  6. H.-I. Kim, G.-H. Moon, D. Monllor-Satoca, Y. Park, and W. Choi, Solar photoconversion using graphene/ $TiO_2$ composites: Nanographene shell on $TiO_2$ core versus $TiO_2$ nanoparticles on graphene sheet, J. Phys. Chem. C, 116(1), 1535-1543 (2012). 

  7. D. Zhao, G. Sheng, C. Chen, and X. Wang, Enhanced photocatalytic degradation of methylene blue under visible irradiation on $graphene@TiO_2$ dyade structure, Appl. Catal. B, 111-112, 303-308 (2012). 

  8. L. Karimi, M. E. Yazdanshenas, R. Khajavi, A. Rashidi, and M. Mirjalili, Using $graphene/TiO_2$ nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity, Cellulose, 21, 3813-3827 (2014). 

  9. C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.-H. Hong, and D.-H. Min, Biomedical applications of graphene and graphene oxide, Acc. Chem. Res., 46(10), 2211-2224 (2013). 

  10. Y. Kikuchia, K. Sunadaa, T. Iyodaa, K. Hashimoto, and A. Fujishimaa, Photocatalytic bactericidal effect of $TiO_2$ thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol. A, 106, 51-56 (1997). 

  11. Z. Zhang, W. Wang, M. Shang, and W. Yin, Low-temperature combustion synthesis of $Bi_2WO_6$ nanoparticles as a visible-lightdriven photocatalyst, J. Hazard. Mater., 177, 1013-1018 (2010). 

  12. J. Ren, W. Wang, L. Zhang, J. Chang, and S. P. Hu, Photocatalytic inactivation of bacteria by photocatalyst $Bi_2WO_6$ under visible light, Catal. Commun., 10, 1940-1943 (2009). 

  13. Z. Cui, D. Zeng, T. Tang, J. Liu, and C. Xie, Enhanced visible light photocatalytic activity of QDS modified $Bi_2WO_6$ nanostructures, Catal. Commun., 11, 1054-1057 (2010). 

  14. J. Ren, W. Wang, S. Sun, L. Zhang, and J. Chang, Enhanced photocatalytic activity of $Bi_2WO_6$ loaded with Ag nanoparticles under visible light irradiation, Appl. Catal. B, 92, 50-55 (2009). 

  15. Y. Zhang, Y. Zhang, L. Fei, X. Jiang, C. Pan, and Y. Wang, Engineering nanostructured $Bi_2WO_6$ - $TiO_2$ toward effective utilization of natural light in photocatalysis, J. Am. Chem. Soc., 94, 4157-4161 (2011). 

  16. Q. C. Xu, D. V. Wellia, Y. H. Ng, R. Amal, and T. T. Y. Tan, Synthesis of porous and visible-light absorbing $Bi_2WO_6$ / $TiO_2$ heterojunction films with improved photoelectrochemical and photocatalytic performances, J. Phys. Chem. C, 115(15), 7419-7428 (2011). 

  17. F. Zhou and Y. Zhu, Significant photocatalytic enhancement in methylene blue degradation of $Bi_2WO_6$ photocatalysts via graphene hybridization, J. Adv. Ceram., 1(1), 72-78 (2012). 

  18. H. Fu, L. Zhang, W. Yao, and Y. Zhu, Photocatalytic properties of nanosized $Bi_2WO_6$ catalysts synthesized via a hydrothermal process, Appl. Catal. B, 66, 100-110 (2006). 

  19. Y. Zhang, L. Fei, X. Jiang, C. Pan, and Y. Wang, Engineering nanostructured $Bi_2WO_6$ - $TiO_2$ toward effective utilization of natural light in photocatalysis, J. Am. Ceram. Soc., 94, 4157-4161 (2011). 

  20. Y.-L. Min, K. Zhang, Y.-C. Chen, and Y.-G. Zhang, Enhanced photocatalytic performance of $Bi_2WO_6$ by graphene supporter as charge transfer channel, Sep. Purif. Technol., 86, 98-105 (2012). 

  21. Z. Sun, J. Guo, S. Zhu, L. Mao, J. Ma, and D. Zhang, A high-performance $Bi_2WO_6$ -graphene photocatalyst for the visible light-induced $H_2$ and $O_2$ generation, Nanoscale, 6, 2186-2193 (2014). 

  22. C. G. Silva and J. L. Faria, Photocatalytic oxidation of benzen derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a $TiO_2$ matrix, Appl. Catal. B, 101, 81-89 (2010). 

  23. D. C. T. Nguyen, K. Y. Cho, and W. C. Oh, Synthesis of frost-like CuO combined graphene- $TiO_2$ by self-assembly method and its high photocatalytic performance, Appl. Surf. Sci., 412, 252-261 (2017). 

  24. J. Yang, X. Wang, X. Zhao, J. Dai, and S. Mo, Synthesis of uniform $Bi_2WO_6$ -reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity, J. Phys. Chem., 119(6), 3068-3078 (2015). 

  25. Y. Li, X. Li, and J. Li, Photocatalytic degradation of methyl orange by $TiO_2$ -coated activated carbon and kinetic study, Water Res., 40, 1119-1126 (2006). 

  26. E. Gao, W. Wang, M. Shang, and J. Xu, Synthesis and enhanced photocatalytic performance of graphene- $Bi_2WO_6$ composite, Phys. Chem. Chem. Phys., 13, 2887-2893 (2011). 

  27. F. Dong, Z. Y. Wang, Y. J. Sun, W. K. Ho, and H. D. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, J. Colloid Interface Sci., 401, 70-79 (2013). 

  28. T. D. Nguyen-Phan, V. H. Pham, E. W. Shin, H. D. Pham, S. Kim, J. S. Chung, and S. H. Hur, The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/ graphene oxide composites, Chem. Eng. J., 170, 226-232 (2011). 

  29. D. C. T. Nguyen, K. Y. Cho, and W. C. Oh, Synthesis of mesoporous $SiO_2$ / $Cu_2O$ -graphene nanocomposites and their highly efficien photocatalytic performance for dye pollutants. RSC Adv., 7, 29284-29294 (2017). 

  30. S. Min and G. Lu, Sites for High efficient photocatalytic hydrogen evolution on a limited-layered $MoS_2$ cocatalyst confined on graphene sheets-The role of graphene, J. Phys. Chem. C, 116(48), 25415-25424 (2012). 

  31. J. P. Zou, J. Ma, J. M. Luo, J. Yu, J. He, Y. Meng, and X. B. Luo, Fabrication of novel heterostructured few layered WS2- $Bi_2WO_6$ / $Bi_{3.84}W_{0.16}O_{6.24}$ composites with enhanced photocatalytic performance, Appl. Catal. B, 179, 220-228 (2015). 

  32. G. Colon, S. Murcia Lopez, M. C. Hidalgoa, and J. A. Nvioa, Sunlight highly photoactive $Bi_2WO_6$ - $TiO_2$ heterostructures for rhodamine B degradation, Chem. Commun., 46, 4809-4811 (2016). 

  33. D. C. T. Nguyen, K. Y. Cho, and W. C. Oh, A facile route to synthesize ternary $Cu_2O$ quantum dot/graphene- $TiO_2$ nanocomposites with an improved photocatalytic effect, Fullerenes, Nanotubes and Carbon Nanostructures DOI: 10.1080/1536383X.2017.1344648 (2017). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로