$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

태양에너지를 이용한 이산화탄소 전환 기술의 현황
Current Status of Solar-energy-based CO2 Conversion to Fuels 원문보기

Current photovoltaic research = 한국태양광발전학회논문지, v.5 no.4, 2017년, pp.122 - 134  

김예지 (신소재공학과, 한국과학기술원) ,  김종민 (신소재공학과, 한국과학기술원) ,  정연식 (신소재공학과, 한국과학기술원)

Abstract AI-Helper 아이콘AI-Helper

As a promising solution to global warming and growing energy demand, photocatalytic $CO_2$ conversion to useful fuels is widely studied to enhance the activity and selectivity of the $CO_2$ photoreduction reactions. In this review, an overview of fundamental aspects of the

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
이산화탄소는 온실가스 중 얼마를 차지하며, 어떤 환경문제를 야기하는가? 19세기에 산업혁명이 일어난 이후, 화석연료를 주에너지원으로 사용함에 따라 전 세계 이산화탄소 배출량은 급격히 증가해왔다. 이산화탄소는 온실가스 전체 부피 중 76%를 차지하며 지구온난화로 인한 심각한 환경문제들을 야기하는데, 이러한 이산화탄소를 감축함과 동시에 화석연료를 대체할 신재생 에너지원으로 이산화탄소를 연료로 전환하는 기술이 최근 들어 많은 관심을 받고 있다.
반도체 비균일 시스템의 장점에는 무엇이 있는가? 3c). 이 시스템의 장점은 전자와 정공이 반대 방향으로 움직여 서로 다른 반도체를 향하기 때문에 공간적으로 전하가 분리되어 이후에 일어나는 이산화탄소 환원 과정에 유리하다는 점이다.
이산화탄소의 전환기술은 어떻게 나눌 수 있는가? 이산화탄소의 전환기술은 크게 화학적 전환과 생물학적 전환으로 나눌 수 있는데, 화학적 전환은 기술적 특성에 의해 다시 전기화학적 전환(electrochemical conversion), 광 전기화학적 전환(photoelectrochemical conversion), 열화학적 전환(thermochemical conversion) 등으로 나눌 수 있다. 이 중에서 지구에 들어오는 태양에너지를 활용하여 추가적인 에너지의 투입없이 이산화탄소의 화학적 전환을 가능하게 하는 광화학적 전환 기술이 최근 친환경적 미래 기술로써 많은 각광을 받고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (91)

  1. Y. Hori,"Electrochemical $CO_{2}$ reduction on metalelectrodes." In Modern aspects of electrochemistry, Springer: pp. 89-189. 2008. 

  2. M. Halmann, "Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells." In Nature, Vol. 275, pp. 115-116. 1978. 

  3. P. Russell, et al., "The electrochemical reduction of carbon dioxide, formic acid, and formaldehyde." In Journal of the Electrochemical Society, Vol. 124, pp. 1329-1338. 1977. 

  4. P. S. Surdhar, et al., "Reduction potential of the carboxyl radical anion in aqueous solutions." In The Journal of Physical Chemistry, Vol. 93, pp. 3360-3363. 1989. 

  5. J. Qiao, et al., "A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels." In Chemical Society Reviews, Vol. 43, pp. 631-675. 2014. 

  6. K. Rajeshwar, et al., "Environmental electrochemistry: Fundamentals and applications in pollution sensors and abatement." Academic press. 1997. 

  7. F. Meng, et al., "Visible light photocatalytic activity of nitrogen- doped $La_{2}Ti_{2}O_{7}$ nanosheets originating from band gap narrowing." In Nano Research, Vol. 5, pp. 213-221. 2012. 

  8. P. Kissinger, et al., "Laboratory Techniques in Electroanalytical Chemistry, revised and expanded." CRC press. 1996. 

  9. W. Tu, et al., "Photocatalytic Conversion of $CO_{2}$ into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects." In Advanced Materials, Vol. 26, pp. 4607-4626. 2014. 

  10. J. Li, et al., "Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review." In Catalysis Science & Technology, Vol. 5, pp. 1360-1384. 2015. 

  11. B. Kumar, et al., "Photochemical and photoelectrochemical reduction of $CO_{2}$ ." In Annual review of physical chemistry, Vol. 63, pp. 541-569. 2012. 

  12. S. N. Habisreutinger, et al., "Photocatalytic reduction of $CO_{2}$ on $TiO_{2}$ and other semiconductors." In Angewandte Chemie International Edition, Vol. 52, pp. 7372-7408. 2013. 

  13. Y.-P. Yuan, et al., "Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion." In Energy & Environmental Science, Vol. 7, pp. 3934-3951. 2014. 

  14. S. Das, et al., "A review on advances in photocatalysts towards $CO_{2}$ conversion." In RSC Advances, Vol. 4, pp. 20856-20893. 2014. 

  15. G. Mele, et al., "Photoreduction of carbon dioxide to formic acid in aqueous suspension: a comparison between phthalocyanine/ $TiO_{2}$ and porphyrin/ $TiO_{2}$ catalysed processes." In Molecules, Vol. 20, pp. 396-415. 2014. 

  16. X. Zhang, et al., "Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production." In Journal of Materials Chemistry A, Vol. 4, pp. 2365-2402. 2016. 

  17. S. Wang, et al., "A stable Zn $CO_{2}$ O 4 cocatalyst for photocatalytic $CO_{2}$ reduction." In Chemical Communications, Vol. 51, pp. 1517-1519. 2015. 

  18. J. Yin, et al., "Self-supported nanoporous $NiCO_{2}O_{4}$ nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting." In Nanoscale, Vol. 8, pp. 1390-1400. 2016. 

  19. Z. Wang, et al., "Reinforced photocatalytic reduction of $CO_{2}$ to CO by a ternary metal oxide $NiCO_{2}O_{4}$ ." In Physical Chemistry Chemical Physics, Vol. 17, pp. 16040-16046. 2015. 

  20. P. Kumar, et al., "Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria ( $SnPc@CeO_{2}$ ) for photoreduction of $CO_{2}$ in visible light." In RSC Advances, Vol. 5, pp. 42414-42421. 2015. 

  21. P. Kumar, et al., "Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for $CO_{2}$ reduction under visible light irradiation." In RSC Advances, Vol. 5, pp. 54929-54935. 2015. 

  22. P. Kumar, et al., "Photo-induced reduction of $CO_{2}$ using a magnetically separable $Ru-CoPc@TiO_{2}@SiO_{2}@Fe_{3}O_{4}$ catalyst under visible light irradiation." In Dalton Transactions, Vol. 44, pp. 4546-4553. 2015. 

  23. R. Kuriki, et al., "Visible-Light-Driven $CO_{2}$ Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts." In Angewandte Chemie International Edition, Vol. 54, pp. 2406-2409. 2015. 

  24. D.-I. Won, et al., "Highly Robust Hybrid Photocatalyst for Carbon Dioxide Reduction: Tuning and Optimization of Catalytic Activities of Dye/ $TiO_{2}$ /Re (I) Organic-Inorganic Ternary Systems." In Journal of the American Chemical Society, Vol. 137, pp. 13679-13690. 2015. 

  25. T. Phongamwong, et al., "Role of chlorophyll in spirulina on photocatalytic activity of $CO_{2}$ reduction under visible light over modified N-doped $TiO_{2}$ photocatalysts." In Applied Catalysis B: Environmental, Vol. 168, pp. 114-124. 2015. 

  26. P. Kumar, et al., "A novel Ru/ $TiO_{2}$ hybrid nanocomposite catalyzed photoreduction of $CO_{2}$ to methanol under visible light." In Nanoscale, Vol. 7, pp. 15258-15267. 2015. 

  27. Y. Ma, et al., "Titanium dioxide-based nanomaterials for photocatalytic fuel generations." In Chemical reviews, Vol. 114, pp. 9987-10043. 2014. 

  28. W. Yu, et al., "Enhanced photocatalytic activity of $gC_{3}N_{4}$ for selective $CO_{2}$ reduction to $CH_{3}OH$ via facile coupling of ZnO: a direct Z-scheme mechanism." In Journal of Materials Chemistry A, Vol. 3, pp. 19936-19947. 2015. 

  29. T. Inoue, et al., "Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders." In Nature, Vol. 277, pp. 637-638. 1979. 

  30. L. Liu, et al., "Photocatalytic $CO_{2}$ reduction with $H_{2}O$ on $TiO_{2}$ nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry." In Acs Catalysis, Vol. 2, pp. 1817-1828. 2012. 

  31. M. Ge, et al., "A review of one-dimensional $TiO_{2}$ nanostructured materials for environmental and energy applications." In Journal of Materials Chemistry A, Vol. 4, pp. 6772-6801. 2016. 

  32. J. Yu, et al., "Enhanced photocatalytic $CO_{2}$ -reduction activity of anatase $TiO_{2}$ by coexposed {001} and {101} facets." In Journal of the American Chemical Society, Vol. 136, pp. 8839-8842. 2014. 

  33. Q. Xu, et al., "Cubic anatase $TiO_{2}$ nanocrystals with enhanced photocatalytic $CO_{2}$ reduction activity." In Chemical Communications, Vol. 51, pp. 7950-7953. 2015. 

  34. Y. Yan, et al., "Slightly hydrogenated $TiO_{2}$ with enhanced photocatalytic performance." In Journal of Materials Chemistry A, Vol. 2, pp. 12708-12716. 2014. 

  35. M. Manzanares, et al., "Engineering the $TiO_{2}$ outermost layers using magnesium for carbon dioxide photoreduction." In Applied Catalysis B: Environmental, Vol. 150, pp. 57-62. 2014. 

  36. Y. Liao, et al., "Efficient $CO_{2}$ Capture and Photoreduction by Amine-Functionalized $TiO_{2}$ ." In Chemistry-A European Journal, Vol. 20, pp. 10220-10222. 2014. 

  37. R. Asahi, et al., "Visible-light photocatalysis in nitrogen-doped titanium oxides." In science, Vol. 293, pp. 269-271. 2001. 

  38. Z. Zhang, et al., "Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources." In Applied Surface Science, Vol. 355, pp. 45-51. 2015. 

  39. S. K. Parayil, et al., "Photocatalytic conversion of $CO_{2}$ to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes." In Applied Catalysis A: General, Vol. 498, pp. 205-213. 2015. 

  40. F. Gonell, et al., "Copper-doped titania photocatalysts for simultaneous reduction of $CO_{2}$ and production of $H_{2}$ from aqueous sulfide." In Applied Catalysis B: Environmental, Vol. 180, pp. 263-270. 2016. 

  41. O. Ola, et al., "Copper based $TiO_{2}$ honeycomb monoliths for $CO_{2}$ photoreduction." In Catalysis Science & Technology, Vol. 4, pp. 1631-1637. 2014. 

  42. M. Park, et al., "Effective CH 4 production from $CO_{2}$ photoreduction using $TiO_{2}$ /xmol%Cu- $TiO_{2}$ double-layered films." In Energy Conversion and Management, Vol. 103, pp. 431-438. 2015. 

  43. J. Y. Do, et al., "Dramatic $CO_{2}$ photoreduction with $H_{2}O$ vapors for $CH_{4}$ production using the $TiO_{2}$ (bottom)/Fe- $TiO_{2}$ (top) double-layered films." In Chemical Engineering Journal, Vol. 275, pp. 288-297. 2015. 

  44. T. Wang, et al., "In situ synthesis of ordered mesoporous Co-doped $TiO_{2}$ and its enhanced photocatalytic activity and selectivity for the reduction of $CO_{2}$ ." In Journal of materials chemistry A, Vol. 3, pp. 9491-9501. 2015. 

  45. B. S. Kwak, et al., "Methane formation from photoreduction of $CO_{2}$ with water using $TiO_{2}$ including Ni ingredient." In Fuel, Vol. 143, pp. 570-576. 2015. 

  46. Z. Xiong, et al., "Efficient photocatalytic reduction of $CO_{2}$ into liquid products over cerium doped titania nanoparticles synthesized by a sol-gel auto-ignited method." In Fuel Processing Technology, Vol. 135, pp. 6-13. 2015. 

  47. L. Matejova, et al., "Preparation, characterization and photocatalytic properties of cerium doped $TiO_{2}$ : on the effect of Ce loading on the photocatalytic reduction of carbon dioxide." In Applied Catalysis B: Environmental, Vol. 152, pp. 172-183. 2014. 

  48. H.-Y. Wu, et al., "Photocatalytic reduction of $CO_{2}$ using molybdenum-doped titanate nanotubes in a MEA solution." In RSC Advances, Vol. 5, pp. 63142-63151. 2015. 

  49. M. Tahir, et al., "Indium-doped $TiO_{2}$ nanoparticles for photocatalytic $CO_{2}$ reduction with $H_{2}O$ vapors to $CH_{4}$ ." In Applied Catalysis B: Environmental, Vol. 162, pp. 98-109. 2015. 

  50. X. Xia, et al., "Solution synthesis of metal oxides for electrochemical energy storage applications." In Nanoscale, Vol. 6, pp. 5008-5048. 2014. 

  51. X. Meng, et al., "Photocatalytic $CO_{2}$ conversion over alkali modified $TiO_{2}$ without loading noble metal cocatalyst." In Chemical Communications, Vol. 50, pp. 11517-11519. 2014. 

  52. J. Di, et al., "Biomimetic CNT@ $TiO_{2}$ composite with enhanced photocatalytic properties." In Chemical Engineering Journal, Vol. 281, pp. 60-68. 2015. 

  53. E. Liu, et al., "Photoconversion of $CO_{2}$ to methanol over plasmonic Ag/ $TiO_{2}$ nano-wire films enhanced by overlapped visible- light-harvesting nanostructures." In Ceramics International, Vol. 41, pp. 1049-1057. 2015. 

  54. Y. Zhang, et al., "Fabrication of Oxygen-Doped Double-Shelled GaN Hollow Spheres toward Efficient Photoreduction of $CO_{2}$ ." In Particle & Particle Systems Characterization, Vol. 33, pp. 583-588. 2016. 

  55. T. Sun, et al., "Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase $TiO_{2}$ synthesized by solvothermal method." In Applied Surface Science, Vol. 347, pp. 696-705. 2015. 

  56. W. Tu, et al., "Au@ $TiO_{2}$ yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of $CO_{2}$ to solar fuel via a local electromagnetic field." In Nanoscale, Vol. 7, pp. 14232-14236. 2015. 

  57. S. t. Neatu, et al., "Gold-copper nanoalloys supported on $TiO_{2}$ as photocatalysts for $CO_{2}$ reduction by water." In Journal of the American Chemical Society, Vol. 136, pp. 15969-15976. 2014. 

  58. Z. Zhang, et al., "Au/Pt nanoparticle-decorated $TiO_{2}$ nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion." In The Journal of Physical Chemistry C, Vol. 117, pp. 25939-25947. 2013. 

  59. Z. Xiong, et al., "Photocatalytic reduction of $CO_{2}$ on $Pt^{2+}-Pt^{0}$ / $TiO_{2}$ nanoparticles under UV/Vis light irradiation: a combination of $Pt^{2+}$ doping and Pt nanoparticles deposition." In International Journal of Hydrogen Energy, Vol. 40, pp. 10049-10062. 2015. 

  60. J. Mao, et al., "Pt-loading reverses the photocatalytic activity order of anatase $TiO_{2}$ {001} and {010} facets for photoreduction of $CO_{2}$ to CH 4." In Applied Catalysis B: Environmental, Vol. 144, pp. 855-862. 2014. 

  61. L. Ye, et al., "Opposite photocatalytic activity orders of low-index facets of anatase $TiO_{2}$ for liquid phase dye degradation and gaseous phase $CO_{2}$ photoreduction." In Physical Chemistry Chemical Physics, Vol. 16, pp. 15675-15680. 2014. 

  62. T. Ohno, et al., "Photocatalytic reduction of $CO_{2}$ over exposed- crystal-face-controlled $TiO_{2}$ nanorod having a brookite phase with co-catalyst loading." In Applied Catalysis B: Environmental, Vol. 152, pp. 309-316. 2014. 

  63. Q. Li, et al., "Photocatalytic reduction of $CO_{2}$ on MgO/ $TiO_{2}$ nanotube films." In Applied Surface Science, Vol. 314, pp. 458-463. 2014. 

  64. J. Fu, et al., "Enhanced photocatalytic $CO_{2}$ -reduction activity of electrospun mesoporous $TiO_{2}$ nanofibers by solvothermal treatment." In Dalton Transactions, Vol. 43, pp. 9158-9165. 2014. 

  65. G. Yin, et al., "Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets." In ACS nano, Vol. 9, pp. 2111-2119. 2015. 

  66. Y. Huang, et al., "Preparation of 2D hydroxyl-rich carbon nitride nanosheets for photocatalytic reduction of $CO_{2}$ ." In RSC Advances, Vol. 5, pp. 33254-33261. 2015. 

  67. W.-N. Wang, et al., "Surface engineered CuO nanowires with ZnO islands for $CO_{2}$ photoreduction." In ACS applied materials & interfaces, Vol. 7, pp. 5685-5692. 2015. 

  68. Y. Yu, et al., "A new $Ni/Ni_{3}(BO_{3})_{2}/NiO$ heterostructured photocatalyst with efficient reduction of $CO_{2}$ into $CH_{4}$ ." In Separation and Purification Technology, Vol. 142, pp. 14-17. 2015. 

  69. H. Park, et al., "Artificial photosynthesis of $C_{1}-C_{3}$ hydrocarbons from water and $CO_{2}$ on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots." In The Journal of Physical Chemistry A, Vol. 119, pp. 4658-4666. 2015. 

  70. M. M. Gui, et al., "One-pot synthesis of Ag-MWCNT@ $TiO_{2}$ core-shell nanocomposites for photocatalytic reduction of $CO_{2}$ with water under visible light irradiation." In Chemical Engineering Journal, Vol. 278, pp. 272-278. 2015. 

  71. M. M. Gui, et al., "Visible-light-driven MWCNT@ $TiO_{2}$ core- shell nanocomposites and the roles of MWCNTs on the surface chemistry, optical properties and reactivity in $CO_{2}$ photoreduction." In RSC Advances, Vol. 4, pp. 24007-24013. 2014. 

  72. M. M. Gui, et al., "Enhanced visible light responsive MWCNT/ $TiO_{2}$ core-shell nanocomposites as the potential photocatalyst for reduction of $CO_{2}$ into methane." In Solar Energy Materials and Solar Cells, Vol. 122, pp. 183-189. 2014. 

  73. M. A. Asi, et al., "Visible-light-harvesting reduction of $CO_{2}$ to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites." In Catalysis today, Vol. 216, pp. 268-275. 2013. 

  74. Z. Fang, et al., "Comparison of catalytic activity of carbonbased AgBr nanocomposites for conversion of $CO_{2}$ under visible light." In Journal of Saudi Chemical Society, Vol. 18, pp. 299-307. 2014. 

  75. Q. Zhang, et al., "Photoreduction of carbon dioxide by graphene-titania and zeolite-titania composites under low-intensity irradiation." In Materials Science in Semiconductor Processing, Vol. 30, pp. 162-168. 2015. 

  76. J. Benedetti, et al., "Synthesis and characterization of a quaternary nanocomposite based on $TiO_{2}$ /CdS/rGO/Pt and its application in the photoreduction of $CO_{2}$ to methane under visible light." In Rsc Advances, Vol. 5, pp. 33914-33922. 2015. 

  77. W.-J. Ong, et al., "Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich- like graphene- $gC_{3}N_{4}$ hybrid nanostructures with enhanced visible-light photoreduction of $CO_{2}$ to methane." In Chemical Communications, Vol. 51, pp. 858-861. 2015. 

  78. W. Tu, et al., "An In Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of $TiO_{2}$ -Graphene 2D Sandwich- Like Hybrid Nanosheets: Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of $CO_{2}$ into Methane and Ethane." In Advanced Functional Materials, Vol. 23, pp. 1743-1749. 2013. 

  79. L. Zhang, et al., "ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of $CO_{2}$ ." In Ceramics International, Vol. 41, pp. 6256-6262. 2015. 

  80. 8A. Wang, et al., "Preparation and characterizations of BiVO 4/reduced graphene oxide nanocomposites with higher visible light reduction activities." In Journal of colloid and interface science, Vol. 445, pp. 330-336. 2015. 

  81. H. Li, et al., "Carbon Quantum Dots/Cu2O Heterostructures for Solar-Light-Driven Conversion of $CO_{2}$ to Methanol." In Advanced Energy Materials, Vol. 5. 2015. 

  82. W.-J. Ong, et al., "Heterostructured AgX/ $gC_{3}N_{4}$ (X Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide." In Applied Catalysis B: Environmental, Vol. 180, pp. 530-543. 2016. 

  83. H. Shi, et al., "Conversion of $CO_{2}$ into renewable fuel over Pt- $gC_{3}N_{4}$ / $KNbO_{3} $ composite photocatalyst." In RSC Advances, Vol. 5, pp. 93615-93622. 2015. 

  84. S. Wang, et al., "Semiconductor-redox catalysis promoted by metal-organic frameworks for $CO_{2}$ reduction." In Physical Chemistry Chemical Physics, Vol. 16, pp. 14656-14660. 2014. 

  85. W.-J. Ong, et al., "Surface charge modification via protonation of graphitic carbon nitride ( $gC_{3}N_{4}$ ) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/ $gC_{3}N_{4}$ nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane." In Nano Energy, Vol. 13, pp. 757-770. 2015. 

  86. L. Shi, et al., "Electrostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal-Organic Framework for Enhanced Photocatalytic $CO_{2}$ Reduction." In Advanced functional materials, Vol. 25, pp. 5360-5367. 2015. 

  87. Y. Wei, et al., "3D ordered macroporous $TiO_{2}$ -supported Pt@ CdS core-shell nanoparticles: design, synthesis and efficient photocatalytic conversion of $CO_{2}$ with water to methane." In Journal of Materials Chemistry A, Vol. 3, pp. 11074-11085. 2015. 

  88. P. Li, et al., "All-solid-state Z-scheme system arrays of Fe 2 V 4 O 13/RGO/CdS for visible light-driving photocatalytic $CO_{2}$ reduction into renewable hydrocarbon fuel." In Chemical Communications, Vol. 51, pp. 800-803. 2015. 

  89. J. L. White, et al., "Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes." In Chemical reviews, Vol. 115, pp. 12888-12935. 2015. 

  90. K. Li, et al., "Recent advances in heterogeneous photocatalytic $CO_{2}$ conversion to solar fuels." 2016. 

  91. J. Wang, et al., " $Cu_{2}O/TiO_{2}$ heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for $CO_{2}$ reduction to methanol." In Catalysis Communications, Vol. 46, pp. 17-21. 2014. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로