$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

이산화탄소 전환 기술의 현황
Recent Development of Carbon Dioxide Conversion Technology 원문보기

청정기술 = Clean technology, v.18 no.3 = no.58, 2012년, pp.229 - 249  

최지나 (한국화학연구원 환경자원공정연구센터 온실가스자원화연구그룹) ,  장태선 (한국화학연구원 환경자원공정연구센터 온실가스자원화연구그룹) ,  김범식 (한국화학연구원 환경자원공정연구센터 온실가스자원화연구그룹)

초록
AI-Helper 아이콘AI-Helper

산업 발달로 화석 연료 사용이 급증하고 이에 따른 지구 온난화 문제와 자원 고갈 문제가 대두되어 지속 성장을 위협하고 있다. 따라서 지속 성장을 위해서 두 문제를 모두 해결하여야 한다. 현재 이산화탄소의 처리 방법으로 인식되고 있는 이산화탄소 포집 및 저장 기술(carbon capture and sequestration, CCS)의 환경 논란으로 인해 사후 처리 기술의 필요성이 커지고 있다. 이에 해결책중 하나로 부각되고 있는 이산화탄소 포집 및 재활용 기술(carbon capture and utilization, CCU)에 대해서 알아보았다. 이산화탄소 전환 기술은 이산화탄소 배출량 감소에 따른 지구 온난화 문제의 해결 뿐 아니라 탄소원의 재활용이란 측면에서 자원고갈 문제의 해결책으로 제시될 수 있겠다. 이산화탄소 전환 기술은 기상 전환과 액상 전환으로 나눌 수 있으며 기상 전환의 경우 필요 에너지 공급원과 온화한 반응조건에서 전환이 이뤄져야 하고 저에너지 소비 생성물 분리 정제 기술의 개발이 필요하다. 액상 전환의 경우, 반응 속도를 높일 수 있는 촉매 및 광감응제 개발과 함께 촉매, 빛, 전기의 혼성 시스템의 개발이 요구되어진다. 이산화탄소 전환 기술은 신재생 에너지바이오산업의 경쟁력 향상을 위한 연결 기술로 그 가치가 매우 크다.

Abstract AI-Helper 아이콘AI-Helper

At present, global warming and depletion of fossil fuels have been one of the big issues which should be solved for sustainable development in the future. CCS (carbon capture and sequestration) technology as the post $CO_2$ reduction technology has been considered as a promising solution ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
CCU 기술은 무엇인가? 지금까지 산업공정에서 대량 배출되는 대표적 온실가스인 이산화탄소를 모아 폐기물처럼 지하나 해저에 매립/저장하는 CCS에 주로 초점을 맞추어 연구가 진행되어 왔으나, 최근 들어 이 이산화탄소를 자원화하는 CCU 기술과 관련한 연구가 새로운 관심을 받고 있다. CCU 기술은 이산화탄소를 단순히 버려지는 물질이 아닌 유용한 자원으로 활용하여 부가가치가 높은 다른 탄소화합물(value-added chemicals)로 전환하는 연구로써, 온실가스의 감축을 통해 환경 문제를 해결함과 동시에, 대기 중에 풍부하게 존재하는 이산화탄소를 탄소원으로 사용하고 또한 사용 후에는 다시 이산화탄소의 형태로 대기 중으로 배출되므로 지속가능한 탄소원의 재활용이란 측면에서도 그 의미를 찾을 수 있다. 아울러 전환 후 고부가가치 탄소화합물의 생성에 따른 추가적인 이익까지도 기대할 수 있기 때문에 그 가능성이 서서히 인정되고 있는 추세이다.
이산화탄소 전환 기술은 온실가스 저감 기술이 될 수 없다는 관점이 많은 이유는? 이산화탄소 전환 기술은 온실가스 저감 기술이 될 수 없다는 관점이 많다. 이는 전환 시 필요로 하는 많은 에너지로 인해 온실가스 발생을 유발한다는 측면과 전환을 통해서 얻어진 물질의 제품 주기가 짧아 다시 이산화탄소를 배출한다는 점이다. 따라서 이산화탄소를 자원화하는 CCU 기술의 도입, 특별히 이산화탄소의 화학적 전환 연구를 위해서 반드시 충족되어야 할 조건이 있는데, 첫째로는 이산화탄소를 재활용 하는 새로운 공정이 전체공정에서 총 이산화탄소의 발생량을 줄일 수 있어야 하고, 둘째로는 이산화탄소를 활용하는 새로운 공정이 기존 대체공정 대비 에너지 및 자원 사용량이 적어야 한다는 점이다.
이산화탄소의 화학적 전환 연구를 위해 반드시 충족되어야 할 조건은 무엇인가? 이는 전환 시 필요로 하는 많은 에너지로 인해 온실가스 발생을 유발한다는 측면과 전환을 통해서 얻어진 물질의 제품 주기가 짧아 다시 이산화탄소를 배출한다는 점이다. 따라서 이산화탄소를 자원화하는 CCU 기술의 도입, 특별히 이산화탄소의 화학적 전환 연구를 위해서 반드시 충족되어야 할 조건이 있는데, 첫째로는 이산화탄소를 재활용 하는 새로운 공정이 전체공정에서 총 이산화탄소의 발생량을 줄일 수 있어야 하고, 둘째로는 이산화탄소를 활용하는 새로운 공정이 기존 대체공정 대비 에너지 및 자원 사용량이 적어야 한다는 점이다. 현재 이산화탄소를 이용한 전환 기술 중 상용화가 이뤄진 공정은 포스겐과 같은 유해물질을 대체한 공정으로 폴리카보네이트 공정이 유일하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (113)

  1. Song, C. O., "Global Challenges and Strategies for Control, Conversion and Utilization of $CO_{2}$ for Sustainable Dvelopment Ivolving Energy, Catalysis, Adsorption and Chemical processing," Catal. Today, 115, 2-32 (2006). 

  2. Aresta, M., and Dibenedetto, A., Carbon Dioxide Recovery and Utilization, Kluwer Academic Publisher, Dordrecht, 2003, pp. 211-214. 

  3. Ruckenstein, E., and Wang, H. Y., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Cobalt Catalysts," Appl. Catal. A, 204, 257-263(2000) 

  4. Edwards, J. H., and Maitra, A. M., "The Chemistry of Methane Reforming with Carbon Dioxide and Its Current and Potential Applications," Fuel Proc. Technol., 42, 269-289 (1995). 

  5. Ruckenstein, E., and Wang, H. Y., "Carbon Deposition and Catalytic Deactivation during $CO_{2}$ Reforming of $CH_{4}$ over Co/gamma- $Al_{2}O_{3}$ Catalysts," J. Catal., 205, 289-293 (2002). 

  6. Hou, Z. Y., and Yashima, T., "Supported Co Catalysts for Methane Reforming with $CO_{2}$ ," React. Kinet. Catal. Lett., 81(1), 153-159 (2004). 

  7. Bouarab, R., Cherifi, O., and Auroux, A., "Reforming of Methane by $CO_{2}$ in Presence of Cobalt-based Catalysts," Green Chem., 5, 209-212 (2003). 

  8. Mondal, K. C., Choudhary, V. R., and Joshi, U. A., " $CO_{2}$ Reforming of Methane to Syngas over Highly Active and Stable Supported $CoO_{x}$ (Accompanied with MgO, $ZrO_{2}$ or $CeO_{2}$ ) Catalysts," Appl. Catal. A, 316, 47-52 (2007). 

  9. Nagaoka, K., Takanabe, K., and Aika, K., "Influence of the Reduction Temperature on Catalytic Activity of Co/ $TiO_{2}$ (Anatase- type) for High Pressure Dry Reforming of Methane," Appl. Catal. A, 255, 13-21 (2003). 

  10. Mark, M. F., and Maier, W. F., " $CO_{2}$ -reforming of Methane on Supported Rh and Ir Catalysts," J. Catal., 164, 122-130 (1996). 

  11. Wang, H. Y., and Ruckenstein, E., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Rhodium Catalysts: the Effect of Support," Appl. Catal. A, 204, 143-152 (2000). 

  12. Hou, Z. Y., Chen, P., Fang, H. L., Zheng, X. M., and Yashima, T., "Production of Synthesis Gas via Methane Reforming with $CO_{2}$ on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts," Int. J. Hydrogen Energy, 31, 555-561 (2006). 

  13. Bradford, M. C. J., and Vannice, M. A., " $CO_{2}$ Reforming of $CH_{4}$ over Supported Pt Catalysts," J. Catal., 173, 157-171 (1998). 

  14. Bitter, J. H., Seshan, K., and Lercher, J. A., "Mono and Bifunctional Pathways of $CO_{2}$ / $CH_{4}$ Reforming over Pt and Rh Based Catalysts," J. Catal., 176, 93-101 (1998). 

  15. Bitter, J. H., Seshan, K., and Lercher, J. A., "The State of Zirconia Supported Platinum Catalysts for $CO_{2}$ / $CH_ {4}$ Reforming," J. Catal., 171, 279-286 (1997). 

  16. Souza, M. M. V. M., Aranda, D. A. G., and Schmal, M., "Coke Formation on Pt/ $ZrO_{2}$ / $Al_{2}O_{3}$ Catalysts during $CH_{4}$ Reforming with $CO_{2}$ ," Ind. Eng. Chem. Res., 41, 4681-4685 (2002). 

  17. Bitter, J. H., Seshan, K., and Lercher, J. A., "Deactivation and Coke Accumulation during $CO_{2}$ / $CH_{4}$ Reforming over Pt Catalysts," J. Catal., 183, 336-343 (1999). 

  18. Ballarini, A. D., de Miguel, S. R., Jablonski, E. L., Scelza, O. A., and Castro, A. A., "Reforming of $CH_{4}$ with $CO_{2}$ on Pt-supported Catalysts Effect of the Support on the Catalytic Behaviour," Catal. Today, 107-108, 481-486 (2005). 

  19. Nakagawa, K., Anzai, K., Matsui, N., Ikenaga, N., Suzuki, T., and Teng, Y. H., "Effect of Support on the Conversion of Methane to Synthesis Gas over Supported Iridium Catalysts," Catal. Lett., 51, 163-167 (1998). 

  20. Wisniewski, M., Boreave, A., and Gelin, P., "Catalytic $CO_{2}$ Reforming of Methane over $Ir/Ce_{0.9}Gd_{0.1}O_{2-x}$ ," Catal. Commun., 6, 596-600 (2005). 

  21. Schulz, P. G., Gonzalez, M. G., Quincoces, C. E., and Gigola, C. E., "Methane Reforming with Carbon Dioxide. The Behavior of Pd/alpha- $Al_{2}O_{3}$ and Pd-CeOx/alpha- $Al_{2}O_{3}$ Catalysts," Ind. Eng. Chem. Res., 44, 9020-9029 (2005). 

  22. Carrara, C., Munera, J., Lombardo, E. A., and Cornaglia, L. M., "Kinetic and Stability Studies of Ru/ $La_{2}O_{3}$ Used in the Dry Reforming of Methane," Top. Catal., 51, 98-106 (2008). 

  23. Bodrov, I. M., and Apel'baum, L. O., "Reaction Kinetics of Methane and Carbon Dioxide on a Nickel Surface," Kinet. Catal., 8, 326-330 (1967). 

  24. Guo, J. Z., Hou, Z. Y., Gao, J., and Zheng, X. M., "DRIFTS Study on Adsorption and Activation of $CH_{4}$ and $CO_{2}$ on Ni/ $SiO_{2}$ Catalyst with Various Ni Particle Sizes," Chin. J. Catal., 28(1), 22-26 (2007). 

  25. Osaki, T., Masuda, H., and Mori, T., "Intermediate Hydrocarbon Species for the $CO_{2}$ - $CH_{4}$ Reaction on Supported Ni Catalysts," Catal. Lett., 29, 33-37 (1994). 

  26. Hu, Y. H., and Ruckenstein, E., "Transient Response Analysis via a Broadened Pulse Combined with A Step Change or An Isotopic Pulse. Application to $CO_{2}$ Reforming of Methane over NiO/ $SiO_{2}$ ," J. Phys. Chem. B, 101, 7563-7565 (1997). 

  27. Randall, D., and Lee, S., The Polyurethane books, John Wiley & Sons, New York, 2002, pp. 113-126. 

  28. Alper, H., and Butler, D. C. D., "Synthesis of Isocyanates from Carbamate Esters Employing Boron Trichloride," Chem. Commun., 2575-2576 (1998). 

  29. Alper, H., and Valli, V. L. K., "A Simple, Convenient, and Efficient Method for the Synthesis of Isocyanates from Urethanes," J. Org. Chem., 60, 257-258 (1995). 

  30. Chong, P. J., Janicki, S. Z., and Pertillo, P. A., "Multilevel Selectivity in the Mild and High-Yielding Chlorosilane-Induced Cleavage of Carbamates to Isocyanates," J. Org. Chem., 63, 8515-8521 (1998). 

  31. Tsuda, T., Sanada, S. I., and Saegusa, T., "Copper-promoted Deoxygenation of Carbon Dioxide by Isocyanide," J. Organometallic Chem., 116, C10-C12 (1976). 

  32. Kim, W. Y., Chang, J. S., Park, S. E., Ferrence, G., and Kubaik, C. P., "Mechanistic and IR Spectroelectrochemical Studies for Alkali Metal Ion Catalyzed Multiple Bond Metathesis Reactions of Carbon Dioxide," Chem. Lett., 1063-1064 (1998). 

  33. Kilgore, U. J., Basuli, F., Huffmann, J. C., and Mindiola, D. J., "Aryl Isocyanate, Carbodiimide, and Isocyanide Prepared from Carbon Dioxide. A Metathetical Group-Transfer Tale Involving a Titanium-Imide Zwitterion," Inorg. Chem., 45, 487- 489 (2006). 

  34. Sita, L. R., J. R., and Xi, R., "Facile Metathetical Exchange between Carbon Dioxide and the Divalent Group 14 Bisamides $M[N(SiMe_{3})_{2}]_{2}$ (M Ge and Sn)," J. Am. Chem. Soc., 118, 10912-10913 (1996). 

  35. Horvath, M. J., Saylik, D., and Elmes, P. S., "A Mitsunobubased Procedure for the Preparation of Alkyl and Hindered Aryl Isocyanates from Primary Amines and Carbon Dioxide under Mild Conditions," Tetrahedron Lett., 40, 363-366 (1999). 

  36. Saylik, D., Horvath, M. J., Elmes, P. S., Jackson, W. R., Lovel, C. G., and Moody, K., "Preparation of Isocyanates from Primary Amines and Carbon Dioxide Using Mitsunobu Chemistry," J. Org. Chem., 64, 3940-3946 (1999). 

  37. Anatastas, P. T., Zimmerman, and Kirchhoff, M. M., "Origins, Current Status, and Future Challenges of Green Chemistry," Acc. Chem. Res., 35, 686-694 (2002). 

  38. Trost, B. M., "On Inventing Reactions for Atom Economy," Acc. Chem. Res., 35, 695-705 (2002). 

  39. Grodkowski, J., Behar, D., Neta, P., and Hambright, P., "Iron Porphyrin-Catalyzed Reduction of $CO_{2}$ . Photochemical and Radiation Chemical Studies," J. Phys. Chem. A, 101, 248-254 (1997). 

  40. Behar, D., Dhanasekaran, T., Neta, P., Hosten, C. M., Ejeh, D., Hambright, P., and Fujita, E., "Cobalt Porphyrin Catalyzed Reduction of $CO_{2}$ . Radiation Chemical, Photochemical, and Electrochemical Studies," J. Phys. Chem. A, 102, 2870-2877 (1998). 

  41. Grodkowski, J., Dhanasekaran, T., Neta, P., Hambright, P., Brunschwig, B. S., Shinozaki, K., and Fujitam, E., "Reduction of Cobalt and Iron Phthalocyanines and the Role of the Reduced Species in Catalyzed Photoreduction of $CO_{2}$ ," J. Phys. Chem. A, 104, 11332-11339 (2000). 

  42. Grodkowski, J., and Neta, P., "Cobalt Corrin Catalyzed Photoreduction of $CO_{2}$ ," J. Phys. Chem. A, 104, 1848-1853 (2000). 

  43. Grodkowski, J., Neta, P., Fujita, E., Mhammed, A., Simkhovich, L., and Gross, Z., "Reduction of Cobalt and Iron Corroles and Catalyzed Reduction of $CO_{2}$ ," J. Phys. Chem. A, 106, 4772-4778 (2002). 

  44. Hawecker, J., Lehn, J. M., and Ziessel, R., "Efficienct Photochemical Reduction of $CO_{2}$ to CO by Visible-Light Irradiation of Systems Containing $Re(bipy)(CO)_{3}X$ or $Re(bipy)_{3}^{2+}-CO^{2+}$ Combinations as Homogeneous Catalysts," J. Chem. Soc., Chem. Commun., 536-538 (1983). 

  45. Hori, H., Johnson, F. P. A., Koike, K., Ishitani, O., and Ibusuki, T., "Efficient Photocatalytic $CO_{2}$ Reduction using $[Re(bpy)(CO)_{3}{P(OEt)_{3}}]^{+}$ ," J. Photochem. Photobiol. A, 96, 171-174 (1996). 

  46. Hori, H., Johnson, F. P. A., Koike, K., Takeuchi, K., Ibusuki, T., and Ishitani, O., "Photochemistry of $[Re(bipy)(CO)_{3}(PPh_{3})]^{+}$ (bipy 2,2'-bipyridine) in the presence of Triethanolamine Associated with Photoreductive Fixation of Carbon Dioxide: Participation of a Chain Reaction Mechanism," J. Chem. Soc. Dalton Trans., 1019-1024 (1997). 

  47. Takeda, H., Koike, K., Inoue, H., and Ishitani, O., "Development of an Efficient Photocatalytic System for $CO_{2}$ Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies," J. Am. Chem. Soc., 130, 2023-2031 (2008). 

  48. Koike, K., Hori, H., Ishizuka, M., Westwell, J. R., Takeuchi, W., Ibusuki, T., Enjouji, K., Konno, H., Skamoto, K., and Ishitani, O., "Key Process of the Photocatalytic Reduction of $CO_{2}$ using $[Re(4,4'-X_{2}-bipyridine)(CO)_{3}PR_{3}]^{+}$ (X $CH_{3}$ , H, $CF_{3}$ and $PR_{3}$ Phosphorus Ligands): Dark Reaction of the One-Electron-Reduced Complexes with $CO_{2}$ ," Organometallics, 16, 5724-5729 (1997). 

  49. Tsubaki, H., Sekine, A., Ohashi, Y., Koike, K., Takeda, H., and Ishitani, O., "Control of Photochemical, Photophysical, Electrochemical, and Photocatalytic Properties of Rhenium(I) Complexes Using Intramolecular Weak Interactions between Ligands," J. Am. Chem. Soc., 127, 15544-15555 (2005). 

  50. Tsubaki, H., Sugawara, A., Takeda, H., Gholamkhass, B., Koike, K., Nozaki, K., Pac, C., Turner, J. J., and Westwell, J. R., "Photocatalytic Reduction of $CO_{2}$ using cis,trans- $[Re(dmbpy)(CO)_{2}(PR_{3})(PR'_{3})]^{+}$ (dmbpy 4,4'-dimethyl-2,2'-bipyridine)," Res. Chem. Intermed., 33(1-2), 37-48 (2007). 

  51. Willner, I., Maidan, R., Mandler, D., Durr, H., Dorr, G., and Zengerle, K., "Photosensitized Reduction of $CO_{2}$ to $CH_{4}$ and $H_{2}$ Evolution in the Presence of Ruthenium and Osmium Colloids: Strategies To Design Selectivity of Products Distribution," J. Am. Chem. Soc., 109(26), 6080-6086 (1987). 

  52. Maidan, R., and Willner, I., "Photoreduction of $CO_{2}$ to $CH_{4}$ in Aqueous Solutions Using Visible Light," J. Am. Chem. Soc., 108(25), 8100-8101 (1986). 

  53. Ishida, H., Tanaka, K., Tanaka, T., "Electrochemical $CO_{2}$ Reduction Catalyzed by $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ and $[Ru(bpy)_{2}(CO)Cl]^{+}$ . The Effect of pH on the Formation of CO and HCOOH," Organometallics, 5, 181-186 (1986). 

  54. Ishida, H., Terada, T., Tanaka, K., and Tanaka, T., "Photochemical $CO_{2}$ Reduction Catalyzed by $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ using Triethanolamine and 1-benzyl-1,4-dihydronicotinamide as an Electron Donor," Inorg. Chem., 29, 905-911 (1990). 

  55. Ishida, H., Tanaka, K., and Tnanka, T., "Photochemical $CO_{2}$ Reduction by an NADH Model Compound in the Presence of $[Ru(bpy)_{3}]^{2+}$ and $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ (bpy 2,2'-bipyridine) in $H_{2}O$ /DMF," Chem. Lett., 17(2), 339-342 (1988). 

  56. Lehn, J.-M., and Ziessel, R., "Photochemical Reduction of Carbon dioxide to Formate Catalyzed by 2,2'-bipyridine- or l,10-phenanthroline-ruthenium(II) Complexes," J. Organomet. Chem., 29, 157-173 (1990). 

  57. Tinnemans, A. H. A., Koster, T. P. M., Thewissen, D. H. M. W., and Mackor, A., "Tetraaza-macrocyclic Cobalt(II) and Nickel( II) Complexes as Electron-Transfer Agents in the Photo (electro)chemical and Electrochemical Reduction of Carbon Dioxide," Recueil des Travaux Chimiques des Pays-Bas, 103 (10), 1288-295 (1984). 

  58. Grant, J. L., Goswami, K., Spreer, L. O., Otvos, J. W., and Calvin, M., "Photochemical Reduction of Carbon Dioxide to Carbon Monoxide in Water using a Nickel(II) Tetra-azamacrocycle Complex as Catalyst," J. Chem. Soc. Dalton Trans., 2105- 2109 (1987). 

  59. Kimura, E., Wada, S., Shionoya, M., and Okazaki, Y., "New Series of Multifunctionalized Nickel(II)-Cyclam (Cyclam 1,4,8,1l-Tetraaza-cyclotetradecane) Complexes. Application to the Photoreduction of Carbon Dioxide," Inorg. Chem., 33, 770-778 (1994). 

  60. Gholamkhass, B., Mametsuka, H., Koike, K., Tanabe, T., Furue, M., and Ishitani, O., "Architecture of Supramolecular Metal Complexes for Photocatalytic $CO_{2}$ Reduction: Ruthenium- Rhenium Bi- and Tetranuclear Complexes," Inorg. Chem., 44, 2326-2336 (2005). 

  61. Sato, S., Koike, K., Inoue, H., and Ishitani, O., "Highly Efficient Supramoecular Photocatalysts for CO Reduction using Visible Light," Photochem. Photobiol. Sci., 6, 454-461 (2007). 

  62. Matsuoka, S., Yamamoto, K., Ogata, T., Kusaba, M., Nakashima, N., Fujita, E., and Yanagida, S., "Efficient and Selective Electron Mediation of Cobalt Complexes with Cyclam and Related Macrocycles in the p-Terphenyl-Catalyzed Photoreduction of $CO_{2}$ ," J. Am. Chem. Soc., 115, 601-609 (1993). 

  63. Ogata, T., Yamamoto, Y., Wada, Y., Murakoshi, K., Kusaba, M., Nakashima, N., Ishida, A., Takamuku, S., and Yanagida, S., "Phenazine-Photosensitized Reduction of $CO_{2}$ Mediated by a Cobalt-Cyclam Complex through Electron and Hydrogen Transfer," J. Phys. Chem., 99, 11916-11922 (1995). 

  64. Inoue, T., Fujishima, A., Konishi, S., and Honda, K., "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277, 637-638 (1979). 

  65. Koci, K., Obalova, L., Matejova, L., Placha, D., Lacny, Z., Jirkovsky, J., and Solcova, O., "Effect of $TiO_{2}$ Particle Size on the Photocatalytic Reduction of $CO_{2}$ ," Appl. Catal. B., 89, 494-502 (2009). 

  66. Wu, J. C. S., "Photocatalytic Reduction of Greenhouse Gas $CO_{2}$ to Fuel," Catal. Surv. Asia, 13(1), 30-40 (2009). 

  67. Nguyen, T-V., Wu, J. C. S., and Chiou, C-H., "Photoreduction of $CO_{2}$ over Ruthenium Dye-sensitized $TiO_{2}$ -based Catalysts under Concentrated Natural Sunlight," Catal. Commun., 9, 2073-2076 (2008). 

  68. Subrahmanyam, M., Kaneco, S., and Alonso-Vante, N., "A screening for the Photo Reduction of Carbon Dioxide Supported on Metal Oxide Catalysts for C1-C3 Selectivity," Appl. Catal. B., 23(2-3), 169-174 (1999). 

  69. Liu, B-J., Torimoto, T., and Yoneyama, H., "Photocatalytic Reduction of Carbon Dioxide in the Presence of Nitrate using $TiO_{2}$ Nanocrystal Photocatalyst Embedded in $SiO_{2}$ Matrices," J. Photochem. Photobiol. A, 115, 227-230 (1998). 

  70. Kaneco, S., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic Reduction of High Pressure Carbon Dioxide using $TiO_{2}$ Powders with a Positive Hole Scavenger," J. Photochem. Photobiol. A, 115, 223-226 (1998). 

  71. Dey, G. R., Belapurkar, A. D., and Kishore, K., "Photo-catalytic Reduction of Carbon Dioxide to Methane using $TiO_{2}$ as Suspension in Water," J. Photochem. Photobiol. A, 163, 503-508 (2004). 

  72. Kaneco, S., Kurimoto, H., Shimizu, Y., Ohta, K., and Mizuno, T., "Photocatalytic Reduction of $CO_{2}$ using $TiO_{2}$ Powders in Supercritical Fluid $CO_{2}$ ," Energy, 24, 21-30 (1999). 

  73. Liu, B. J., Torimoto, T., Matsumoto, H., and Yoneyama, H., "Effect of Solvents on Photocatalytic Reduction of Carbon Dioxide using $TiO_{2}$ Nanocrystal Photocatalyst Embedded in $SiO_{2}$ Matrices," J. Photochem. Photobiol. A, 108, 187-192 (1997). 

  74. Tseng, I. H., Chang, W.-C., and Wu, J. C. S., "Photoreduction of $CO_{2}$ using Sol-gel Derived Titania and Titania-supported Copper Catalysts," Appl. Catal. B, 37, 37-48 (2002). 

  75. Adachi, K., Ohta, K., and Mizuno, M., "Photocatalytic Reduction of Carbon Dioxide to Hydrocarbon using Copperloaded Titanium Dioxide," Solar Energy, 53, 187-190 (1994). 

  76. Ishitani, O., Inoue, C., Suzuki, Y., and Ibusuki, T., "Photocatalytic Reduction of Carbon Dioxide to Methane and Acetic Acid by an Aqueous Suspension of Metal Deposited $TiO_{2}$ ," J. Photochem. Photobiol. A, 72, 269-271 (1993). 

  77. Slamet, Nasution, H. W., Purnama, E. Kosela, S., and Gunlazuardi, J., "Photocatalytic Reduction of $CO_{2}$ on Copper-doped Titania Catalysts Prepared by Improved-impregnation Method," Catal. Commun., 6, 313-319 (2005). 

  78. Shioya, Y., Ikeue, K., Ogawa, M., and Anpo, M., "Synthesis of Transparent Ti-containing Mesoporous Silica Thin Film Materials and Their Unique Photocatalytic Activity for the Reduction of $CO_{2}$ with $H_{2}O$ ," Appl. Catal. A, 254, 251-259 (2003). 

  79. Ikeue, K., Nozaki, S., Ogawa, M., and Anpo, M., "Characterization of Self-standing Ti-containing Porous Silica Thin Films and Their Reactivity for the Photocatalytic Reduction of $CO_{2}$ with $H_{2}O$ ," Catal. Today, 74, 241-248 (2002). 

  80. Ikeue, K., Yamashita, H., Anpo, M., and Takewaki, T., "Photocatalytic Reduction of $CO_{2}$ with $H_{2}O$ on Ti- $\beta$ Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties," J. Phys. Chem. B, 105, 8350-8355 (2001). 

  81. Xia, X.-H., Jia, Z-J., Yu, W., Liang, Y., Wang, Z., and Ma, L.-L., "Preparation of Multi-walled Carbon Nanotube Supported $TiO_{2}$ and its Photocatalytic Actvitity in the Reduction of $CO_{2}$ with $H_{2}O$ ," Carbon, 45, 717-721 (2007). 

  82. Kim, W., Seok, T., and Choi, W., "Nafion Layer-enhanced Photosynthetic Conversion of $CO_{2}$ into Hydrocarbons on $TiO_{2}$ Nanoparticles," Energy Environ. Sci., 5, 6066-6070 (2012) 

  83. Tsuneoka, H., Teramura, K., Shishido, T., and Tanaka, T., "Adsorbed Species of $CO_{2}$ and $H_{2}$ on $Ga_{2}O_{3}$ for the Photocatalytic Reduction of $CO_{2}$ ," J. Phys. Chem. C, 114, 8892- 8898 (2010). 

  84. Teramura, K., Okuoka, S., Tsuneoka, H., Shishido, T., and Tanaka, T., "Photocatalytic Reduction of $CO_{2}$ using $H_{2}$ as Reductant over $ATaO_{3}$ Photocatalysts (A Li, Na, K)," Appl. Catal. B, 96, 565-568 (2010). 

  85. Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T., and Yoshida, S. "Photoreduction of Carbon Dioxide by Hydrogen over Magnesium Oxide," Phys. Chem. Chem. Phys., 3, 1108-1113 (2001). 

  86. Kohno, Y., Tanaka, T., Funabiki, T., and Yoshida, S., "Photoreduction of $CO_{2}$ with $H_{2}$ over $ZrO_{2}$ . A Study on Interaction of Hydrogen with Photoexcited $CO_{2}$ ," Phys. Chem. Chem. Phys., 2, 2635-2639 (2000). 

  87. Liu, W., Huang, B., Dai, Y., Zhang, X., Qin, X., Jiang, M., and Whangbo, M.-H., "Selective Ethanol Formation from Photocatalytic Reduction of Carbon Dioxide in Water with $BiVO_{4}$ Photocatalyst," Catal. Commun., 11, 210-213 (2009). 

  88. Pan, P.-W., and Chen, Y.-W., "Photocatalytic Reduction of Carbon Dioxide on NiO/ $InTaO_{4}$ under Visible-light Irradiation," Catal. Commun., 8, 1546-1549 (2007). 

  89. Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., Yanagida, S., Okada, T., and Kobayashi, H., "Effect of Surface Structures on Photocatalytic $CO_{2}$ Reduction Using Quantized CdS Nanocrystallites," J. Phys. Chem. B, 101, 8270-8278 (1997). 

  90. Yanagida, S., Kanemoto, M., Ishihara, K. I., Wada, Y., Sakata, T., and Mori, H., "Visible-Light Induced Photoreduction of $CO_{2}$ with CdS Nanocrystallites- Importance of the Morphology and Surface Structures Controlled through Solvation by N, N-Dimethylformamide," Bull, Chem. Soc. Jpn., 70, 2063-2070 (1997). 

  91. Kanemoto, M., Hosokawa, H., Wada, Y., Murakoshi, K., Yanagida, S., Sakata, T., Mori, H., Ishikawa, M., and Kobayashi, H., "Role of Surface in the Photoreduction of Carbon Dioxide Catalysed by Colloidal ZnS Nanocrystallites in Organic Solvent," J. Chem. Soc, Faraday Trans., 92(13), 2401-2411 (1996). 

  92. Inoue, H., Moriwaki, H., Maeda, K., and Yoneyama, H., "Photoreduction of Carbon Dioxide using Chalcogenide Semiconductor Microcrystals," J. Photoochem. Photobiol. A, 86, 191- 196 (1995). 

  93. Wang, C., Thompson, R. L., Baltrus, J., and Matranga, C., "Visible-Light Photoreduction of $CO_{2}$ Using CdSe/Pt/ $TiO_{2}$ Heterostructured Catalysts," J. Phys. Chem. Lett., 1, 48-53 (2010). 

  94. Ozcan, O., Yukruk, F., Akkaya, E., and Uner, D., "Dye Sensitized $CO_{2}$ Reduction over Pure and Platinized $TiO_{2}$ ," Top. Catal., 44(4), 523-528 (2007). 

  95. Woolerton, T. W., Sheard, S., Reisner, E., Pierce, E., Ragsdale, S. W., and Armstrong, F. A., "Efficient and Clean Photoreduction of $CO_{2}$ to CO by Enzyme-modified $TiO_{2}$ Nanoparticles Using Visible Light," J. Am. Chem. Soc., 132, 2132-2133 (2010). 

  96. Halmann, M., "Photoelectrochemical Reduction of Aqueous Carbon Dioxide on p-type Gallium Posphide in Liquid Junction Solar Cells," Nature, 275, 115-116 (1978). 

  97. Inoue, T., Fujishima, A., Konishi, S., and Honda, K., "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277, 637-638 (1979). 

  98. Taniguchi, I., Aurian-blajeni, B., and Bockris, J. O., "Photoaided Reduction of Carbon Dioxide to Carbon Monoxide," J. Electroanal. Chem., 157(2), 179-182 (1983). 

  99. Canfield, D., and Frese, J. K. W., "Reduction of Carbon Dioxide to Methanol on n- and p-GaAs and p-InP: Effect of Crystal Face, Electrolyte and Current Density," J. Electrochem. Soc., 130(8), 1772-1773 (1983). 

  100. Ikeda, S., Yoshida, M., and Ito, K. "Photoelectrochemical Reduction Products of Carbon Dioxide at Metal Coated p-GaP Photocathodes in Aqueous Electrolytes" Bull. Chem. Soc. Jpn., 58(5), 1353-1357 (1985). 

  101. Ikeda, S., Saito, Y., Yoshida, M., Noda, H., Maeda, M., and Ito, K., "Photoelectrochemical Reduction Products of Carbon Dioxide at Metal Coated p-Gap Photocathodes in Non-aqueous Electrolytes," J. Electroanal. Chem., 260, 335-345 (1989). 

  102. Hinogami, R., Nakamura, Y., Yae, S., and Nakato, Y., "An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Mo dification with Small Metal Particles," J. Phys. Chem. B, 102, 974-980 (1998). 

  103. Kaneco, S., Katsumata, H., Suzuki, T., and Ohta, K., "Photoelectrocatalytic Reduction of $CO_{2}$ in LiOH/Methanol at Metalmodified p-InP Electrodes," Appl. Catal. B, 64, 139-145 (2006). 

  104. Taniguchi, Y., Yoneyama, H., and Tamura, H., "Photoelectrochemical Reduction of Carbon Dioxide at p-Type Gallium Phosphide Electrodes in the Presence of Crown Ether," Bull. Chem. Soc. Jpn., 55(7), 2034-2039 (1982). 

  105. Bockris, J. O., and Wass, J. C., "On the Photoelectrocatalytic Reduction of Carbon Dioxide," Mater. Chem. Phys., 22(3-4), 249-330 (1989). 

  106. Parkinson, B. A., and Weaver, P. F., "Photoelectrochemical Pumping of Enzymatic $CO_{2}$ Reduction," Nature, 309, 148-149 (1984). 

  107. Bradley, M. G., and Tysak, T., "p-Type Silicon Based Photoelectrochemical Cells for Optical Energy Conversion: Electrochemistry of Tetra-azomacrocyclic Metal Complexes at Illuminated," J. Electroanal. Chem., 135, 153-157 (1982). 

  108. Beley, M., Collin, J.-P., Sauvage, J.-P., Petit, J.-P., and Chartier, P., "Photoassisted Electro-reduction of $CO_{2}$ on p-GaAs in the Presence of Ni $cyclam^{2+}$ ," J. Electroanal. Chem., 206, 333-339 (1986). 

  109. Petit, J.-P., Chartier, P., Beley, M., and Deville, J.-P., "Molecular Catalysts in Photoelectrochemical Cells: Study of an Efficient System for the Selective Photoelectroreduction of $CO_{2}$ : p-GaP or $p-GaAs/Ni(cyclam)^{2+}$ , Aqueous Medium," J. Electroanal. Chem., 269, 267-281 (1989). 

  110. Kumar, B., Smieja, J. M., and Kubiak, C. P., "Photoreduction of $CO_{2}$ on p-type Silicon using $Re(Bipy-But)(CO)_{3}Cl$ : Photovoltages Exceeding 600 mV for the Selective Reduction of $CO_{2}$ to CO," J. Phys. Chem. C, 114, 14220-14223 (2010). 

  111. Barton, E. E., Rampulla, D. M., and Bocarsly, A. B., "Selective Solar-driven Reduction of $CO_{2}$ to Methanol using a Catalyzed p-GaP Based Photoelectrochemical Cell," J. Am. Chem. Soc., 130, 6342-6344 (2008). 

  112. Cabrera, C. R., and Abruna, H. D., "Electrocatalysis of $CO_{2}$ Reduction at Surface Modified Metallic and Semiconducting Electrodes," J. Electroanal. Chem., 209, 101-107 (1986). 

  113. Arai, T., Sato, S., Uemura, K., Morikawa, T., Kajino, T., and Motohiro, T., "Photoelectrochemical Reduction of $CO_{2}$ in Water under Visible-light Irradiation by a p-Type InP Photocathode Modified with an Electropolymerized Ruthenium Complex," Chem. Commun., 46, 6944-6946 (2010). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로