$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Production and Characterization of Keratinolytic Proteases by a Chicken Feather-Degrading Thermophilic Strain, Thermoactinomyces sp. YT06 원문보기

Journal of microbiology and biotechnology, v.27 no.12, 2017년, pp.2190 - 2198  

Wang, Lin (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences) ,  Qian, Yuting (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences) ,  Cao, Yun (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences) ,  Huang, Ying (Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area) ,  Chang, Zhizhou (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences) ,  Huang, Hongying (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences)

Abstract AI-Helper 아이콘AI-Helper

Thermoactinomyces sp. strain YT06 was isolated from poultry compost and observed to degrade integral chicken feathers completely at $60^{\circ}C$, resulting in the formation of 3.24 mg/ml of free amino acids from 50 ml of culture containing 10 g/l chicken feathers. Strain YT06 could grow ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The aerobic thermophilic bacterium was very effective in the enzymolysis of whole chicken feathers at 60°C and high pH values, which seemed to be related to the extracellular keratinase activity. The aim of this present study was to investigate the optimization conditions of different physical factors for the secretion of thermostable keratinolytic proteases and characterize the crude enzymes. The findings of this study suggest that Thermoactinomyces sp.
본문요약 정보가 도움이 되었나요?

참고문헌 (37)

  1. Lange L, Huang Y, Busk PK. 2016. Microbial decomposition of keratin in nature - a new h ypothesis of industrial relevance. Appl. Microbiol. Biotechnol. 100: 2083-2096. 

  2. Mckittrick J, Chen PY, Bodde SG, Yang W, Novitskaya EE, Meyer MA. 2012. The structure, functions, and mechanical properties of keratin. JOM 64: 449-468. 

  3. Wang L, Cheng G, Ren Y, Dai Z, Zhao ZS, Liu F, et al. 2015. Degradation of intact chicken feathers by Thermoactinomyces sp. CDF and characterization of its keratinolytic protease. Appl. Microbiol. Biotechnol. 99: 3949-3959. 

  4. Gradisar H, Friedrich J, Krizaj I, Jerala R. 2005. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 71: 3420-3426. 

  5. Huang Y, Busk PK, Lange L. 2015. Production and characterization of keratinolytic proteases produced by Onygena corvina. Fungal Genom. Biol. 5: 119. 

  6. Matsui T, Yamada Y, Mitsuya H, Shigeri Y, Yoshida Y, Saito Y, et al. 2009. Sustainable and practical degradation of intact chicken feathers by cultivating a newly isolated thermophilic Meiothermus ruber H328. Appl. Microbiol. Biotechnol. 82: 941-950. 

  7. Riffel A, Daroit DJ, Brandelli A. 2011. Nutritional regulation of protease production by the feather-degrading bacterium Chryseobacterium sp. kr6. New Biotechnol. 28: 153-157. 

  8. Fellahi S, Chibani A, Feuk-Lagerstedt E, Taherzadeh MJ. 2016. Identification of two new keratinolytic proteases from a Bacillus pumilus strain using protein analysis and gene sequencing. AMB Express 6: 1-8. 

  9. Abdel-Naby MA, Ibrahim MH, El-Refai HA. 2016. Catalytic, kinetic and thermodynamic properties of Bacillus pumilus FH9 keratinase conjugated with activated pectin. Int. J. Biol. Macromol. 85: 238-245. 

  10. Kunert DJ. 2010. Biochemical mechanism of keratin degradation by the actinomycete Streptomyces fradiae and the fungus Microsporum gypseum: a comparison. J. Basic Microbiol. 29: 597-604. 

  11. Blyskal B. 2009. Fungi utilizing keratinous substrates. Int. Biodeterior. Biodegradation 63: 631-653. 

  12. Gupta R, Sharma R, Beg QK. 2013. Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit. Rev. Biotechnol. 33: 216-228. 

  13. Kornillowicz-Kowalska T, Bohacz J. 2011. Biodegradation of keratin waste: theory and practical aspects. Waste Manag. 31: 1689-1701. 

  14. Brandelli A, Daroit DJ, Riffel A. 2010. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85: 1735-1750. 

  15. Petrova DH, Shishkov SA, Vlahov SS. 2006. Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties. J. Basic Microbiol. 46: 275-285. 

  16. Zabolotskaya MV, Demidyuk IV, Akimkina TV, Kostrov SV. 2004. A novel neutral protease from Thermoactinomyces species 27a: sequencing of the gene, purification, and characterization of the enzyme. Protein J. 23: 483-492. 

  17. Verma A, Singh H, Anwar MS, Kumar S, Ansari MW, Agrawal S. 2016. Production of thermostable organic solvent tolerant keratinolytic protease from Thermoactinomyces sp. RM4: IAA production and plant growth promotion. Front. Microbiol. 7: 1189. 

  18. Sambrook J, Russell DW. 2016. Molecular Cloning: A Laboratory Manual, pp. 895-909. 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 

  19. Fang Z, Zhang J, Liu B, Jiang L, Du G, Chen J. 2014. Cloning, heterologous expression and characterization of two keratinases from Stenotrophomonas maltophilia BBE11-1. Process Biochem. 49: 647-654. 

  20. Gatti R, Gioia MG, Andreatta P, Pentassuglia G. 2004. HPLC-fluorescence determination of amino acids in pharmaceuticals after pre-column derivatization with phanquinone. J. Pharm. Biomed. Anal. 35: 339-348. 

  21. Liang X, Bian Y, Tang XF, Xiao G, Tang B. 2010. Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions. Appl. Microbiol. Biotechnol. 87: 999-1006. 

  22. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. 

  23. Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S. 2008. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90: 1291-1305. 

  24. Gupta R , Ramnani P. 2006. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70: 21-33. 

  25. Kumar R, Balaji S, Uma TS, Mandal AB, Sehgal PK. 2010. Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal - a biowaste management. Appl. Biochem. Biotechnol. 160: 30-39. 

  26. Ramnani P, Gupta R. 2004. Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnol. Appl. Biochem. 40: 191-196. 

  27. Gioppo NMD, Moreira-Gasparin FG, Costa AM, Alexandrino AM, de Souza CG, Peralta RM. 2009. Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. J. Ind. Microbiol. Biotechnol. 36: 705-711. 

  28. Anbu P, Gopinath S, Hilda A, Lakshmipriya TG. 2007. Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis. Bioresour. Technol. 98: 1298-1303. 

  29. Elbondkly AM. 2010. Keratinolytic activity from new recombinant fusant AYA2000, derived from endophytic Micromonospora strains. Can. J. Microbiol. 56: 748-760. 

  30. Friedrich AB, Antranikian G. 1996. Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl. Environ. Microbiol. 62: 2875-2882. 

  31. Liang JD, Han YF, Zhang JW, Du W, Liang ZQ, Li ZZ. 2011. Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIFR-H49-1. J. Appl. Microbiol. 110: 871-880. 

  32. Wang B, Yang W, Mckittrick J, Meyers MA. 2016. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76: 229-318. 

  33. Nam GW, Lee DW, Lee HS, Lee NJ, Kim BC, Choe EA, et al. 2003. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538-547. 

  34. Kublanov IV, Tsirul'Nikov KB, Kaliberda EN, Rumsh LD, Haertle T, Bonchosmolovskaia EA. 2009. Keratinase of an anaerobic thermophilic bacterium Thermoanaerobacter sp. strain 1004-09 isolated from a hot spring in the Baikal Rift zone. Microbiology 78: 79-88. 

  35. Riessen S, Antranikian G. 2001. Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5: 399-408. 

  36. Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M, et al. 2014. Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J. Biosci. Bioeng. 117: 413-421. 

  37. Prakash P, Jayalakshmi SK, Sreeramulu K. 2010. Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl. Microbiol. Biotechnol. 87: 625-633. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로