$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Measurement and Spatial Analysis of Uranium-238 and Radon-222 of Soil in Seoul 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.22 no.1, 2017년, pp.33 - 40  

Oh, Dal-Young (Seoul Metropolitan Government Research Institute of Public Health and Environment) ,  Shin, Kyu-Jin (Seoul Metropolitan Government Research Institute of Public Health and Environment) ,  Jeon, Jae-Sik (Seoul Metropolitan Government Research Institute of Public Health and Environment)

Abstract AI-Helper 아이콘AI-Helper

Identification of radon in soil provides information on the areas at risk for high radon exposure. In this study, we measured uranium-238 and radon-222 concentrations in soil to assess their approximate levels in Seoul. A total of 246 soil samples were taken to analyze uranium with ICP-MS, and 120 m...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, uranium concentrations were pre-measured in order to predict the areas with a high risk for radon, and then radon concentrations in soil were spatially measured and analyzed. The uranium map and the radon map with geological classification were made using Arcview 3.

대상 데이터

  • 2 m. The data were achieved from the Borehole Status in Seoul in Geotechnical Information Database System (http://surveycp.seoul.go.kr) and the distance between a borehole and sampling spot is within 50 m. From the acquired data, the compositions of the soils are shown in Table 2 and almost of them consist of gravel, sand, or sandy silts, therefore the permeability of each soil is expected to be quite high with no such a meaningful difference.
  • 2 using a format corresponding to a map. The map was made using Arcview3.3, and the geological base layer files (shp, dbf, shx, etc.) were provided by the Seoul Development Institute and KIGAM (Korea Institute of Geoscience and Mineral Resources). And basement rock in each sampling spot was double-checked on the 1 : 250,000 geographical map provided on-line by KIGAM (https://mgeo.
  • Although radon in soil as a representative value has been generally measured using grid methods through which the area is divided at some intervals as 1 sample per 100 × 100 meter squares or 1 × 1 kilometer squares in European radon soil maps (Dubois, 2005), boring in privately-owned lands requires adequate administrative procedures to gain permission in advance. Therefore, the sampling sites of this study were selected from about 350 Annual Soil Contamination Monitoring sites that were previously legally appointed. Instead, the sites were randomly selected, and these also covered the entire area of study at some intervals.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. Akerblom, G., 1987, Investigations and mapping of radon risk areas, In: Geology for environmental planning, Proceeding of the International Symposium on Geological Mapping in the Service of Environmental Planning, Nor. Jour. of Geology, Trondheim, Norway, p. 96-106. 

  2. Akerblom, G., 1999, Radon legislation and national guidelines, Swedish Radiation Protection Institute, Stockholm, 61 p. 

  3. Baek, S., 2007., Spatial distribution analysis of radon concentration in Seoul using the GIS (master thesis), Yonsei University, Seoul, 83 p. 

  4. Ball, T.K. and Miles, J.C.H., 1993, Geological and geochemical factors affecting the radon concentration in homes in Cornwall and Devon, UK, Environ. Geochem. Health, 15, 27-36. 

  5. Barnet, I. and Pacherova, P., 2011, Impact of the deeper geological basement on soil gas and indoor radon concentrations in areas of Quaternary fluvial sediments (Bohemian Massif, Czech Republic), Environ. Earth Science, 63, 551-557. 

  6. Barnet, I. and Pacherova, P., 2013, Increased soil gas radon and indoor radon concentrations in Neoproterozoic olistostromes of the Tepla'-Barrandian unit (Czech Republic), Environ. Earth Science, 69, 1601-1607. 

  7. Boreholes in Seoul, 2015, Research for geological data in Seoul, http://surveycp.seoul.go.kr:8080/Soil/main.do (accessed 15.02.14). 

  8. Choubey, V.M., Sharma, K.K., and Ramola, R.C., 1997, Geology of radon occurrence around Jari in Parvati valley, Himachal Pradesh, India, J. Environ. Radioact., 34, 139-147. 

  9. Clavensjo, B., Akerblom, G., and Morkunas, G., 1999, Indoor radon: Its reduction technique, Litimo, Vilnius, 128 p. 

  10. Cohen, B.L. and Gromicko, N., 1988, Variation of radon levels in US homes with various factors, J. Air Pollut. Control Assoc., 38(2), 129-134. 

  11. Demoury, C., Ielsch, G., Hemon, D., Laurent, O., Laurier, D., Clavel, J., and Guillevic, J., 2013, A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France, J. Environ. Radioact., 126, 216-225. 

  12. Drolet, J.P. and Martel, R., 2016, Distance to faults as a proxy for radon gas concentration in dwellings, J. Environ. Radioact., 152, 8-15. 

  13. Dubois, G., 2005, An overview of radon surveys in Europe, EC Office for Official Publications of the European Communities, Luxembourg, 168 p. 

  14. Duggal, V., Rani, A., and Mehra, R., 2014, Measurement of soil-gas radon in some areas of Northern Rajasthan, India, J. Earth. Syst. Sci., 123, 1241-1247. 

  15. Grapes, R. and Jeong, G., 2008, Beneath our feet: Geology and landscape of Seoul, Royal Asiatic Society-Korea Branch, 83, 117-132. 

  16. Gundersen, L.C.S., Schumann, R.R., Otton, J.K., Dubiel, R.F., Owen, D.E., and Dickinson, K.A., 1992, Geology of radon in the United States, In: Gundersen, L.C.S. (Eds.), Geologic Controls on Radon, Geological Society America Special Paper, 271, 1-16. 

  17. Ielsch, G., Cushing, M.E., Combes, Ph., and Cuney, M., 2010, Mapping of the geogenic radon potential in France to improve radon risk management: methodology and first application to region Bourgogne, J. Environ. Radioact., 101, 813-820. 

  18. Je, H., 2003, Study on the assessment of radon potential in the areas covered with granite and gneiss in Korea (doctoral thesis), Seoul National University, Seoul, 227 p. 

  19. Jeon, J., 2007, Time and spatial variations of radon, and its sources in Seoul Metropolitan subway stations (doctoral thesis), University of Seoul, Seoul, 181 p. 

  20. Kakati, R.M., Kakati, L., and Ramachandran, T.V., 2013, Measurement of uranium, radium and radon exhalation rate of soil samples from Karbi Anglong district of Assam, India using EDXRF and Can technique method, APCBEE Proc., 69, 1601-1607. 

  21. Kemski, J., Klingel, R., and Siehl, A., 1996, Classification and mapping of radon-affected areas in Germany, Environ. Int. 22(1), 789-798. 

  22. Kemski, J., Siehl, A., Stegemann, R., and Valdivia-Manchego, M., 2001, Mapping the geogenic radon potential in Germany, Sci. Total Environ., 272, 217-230. 

  23. Kim, J., Kim, S., Lee, H., Choi, J., and Moon, K., 2012, Characteristics of radon variability in soil at Busan area, Econ. Environ. Geol., 45(3), 277-294. 

  24. Klausman, R.W. and Jaacks, J.A., 1987, Environmental influences upon mercury, radon and helium concentration in soil gases at a site near Denver Colorado, J. Geochem. Explor., 27, 259-280. 

  25. Kojima, H. and Nagano, K., 1999, The influence of meteorological and soil parameters on radon exhalation, Proceedings of the International Conference of Radon in the Living Environment, Athens, 627-642. 

  26. Korea Institute of Geoscience and Mineral Resources, 1999, Numerical Geology maps (SHP files), Kigam, Daejeon. 

  27. Lara, E.G., Rocha, Z., Santos, T., Miguel, R.A., Neto, A.D., Menezes, M.A., and Oliveira, A.H., 2011, Distribution of soil gas radon concentration in the metropolitan region of Belo Horizonte, Brazil and correlations with lithologies and pedologies, International Nuclear Atlantic Conference, Belo Horizonte, 10 p. 

  28. Miles, J., 1998, Development of maps of radon-prone areas using radon measurements in houses, J. Hazardous Materials, 61, 53-58. 

  29. Nazaroff, W.W. and Nero, A.V., 1988, Radon and its decay products in indoor air, John Wiley & Sons, New York, 518 p. 

  30. Nazaroff, W.W., Feustel, H., Nero, A.V., Revzan, K.L., Grimsrud, D.T., Essling, M.A., and Toohey, R.E., 1985, Radon transport into a detached one-story house with a basement, Atmos. Environ., 19(1), 31-46. 

  31. Pasztor, L., Szabo, K.Z., Szatmari, G., Laborczi, A., and Horvath, A., 2016, Mapping geogenic radon potential by regression kriging, Sci. Total Environ., 544, 883-891. 

  32. Seoul Census, 2016, Population of Seoul. http://stat.seoul.go.kr/octagonweb/jsp/WWS7/WWSDS7100.jsp?re_stc_cd419&re_langkor (accessed 16.05.06). 

  33. Stranden, E., Kolstad, A.K., and Lind, B., 1984, The influence of moisture and temperature on radon exhalation, Radiat. Prot. Dosim., 7(1-4), 55-58. 

  34. Szabo, K.Z., Jordan, G., Horvath, A., and Szabo, C., 2014, Mapping the geogenic radon potential: methodology and spatial analysis for central Hungary, J. Environ. Radioact., 129, 107-120. 

  35. Talbot, D.K., Appleton, J.D., Ball, T.K., and Strutt, M.H., 1998, A comparison of field and laboratory analytical methods for radon site investigation, J. Geochem. Explor., 65(1), 79-90. 

  36. Tanner, A.B., 1980, Radon migration in the ground: A supplementary review In: Gesell, T.F., Lowder, W.M. (Eds.), Natural Radiation Environment III-Volume 1, National Technical Information Service, U.S. Department of Energy, Springfield, 5-56. 

  37. UNSCEAR, 1993, Exposure from natural sources of radiation: Report to the General Assembly, with Scientific Annexes, 48th Session, United Nations Scientific Committee on Effects of Atomic Radiation, New York: United Nations, 89 p. 

  38. WHO, 2009, Handbook on indoor radon: a public health perspective, WHO press, Switzerland, 94 p. 

  39. World Nuclear Association, 2016, Nuclear radiation and health effects, http://www.world-nuclear.org/information-library/safety-andsecurity/radiation-and-health/nuclear-radiation-and-healtheffects.aspx (accessed 16.10.12). 

  40. Wilkening, M., 1990, Radon in the environment, Elsevier, New York, 137 p. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로